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FOREWORD

"The Engineer Grapples With Nonlinear Problems" was the title of the
Fifteenth Josiah Willard Gibbs Lecture by Theodore von Karman published in
August 1940 in the Bulletin of the American Mathematical Society. With his
characteristic clarity and insight, Von Karman presented key aspects of non-
linear problems in selected fields of engineering and concisely described the
mathematics available to address them. 1In May 1956, the entire issue of the
Journal of the Aeronautical Sciences was comprised of papers written by former
students of Von Karman and dedicated to him on the occasion of his 75th birth-
day. 1In this issue was a paper by Francis Clauser entitled "The Behavior of
Nonlinear Systems."

We recommend Von Karman's 1940 paper and Clauser's 1956 paper for their
illuminating discussions of fundamental nonlinear problems in engineering.
Both papers include brief treatments of nonlinear problems in structural and
s0lid mechanics. Notable advancements, dominated by the remarkable growth
of computer technology, have been made in these fields in recent years.
Nevertheless, in structural and solid mechanics the kinds of nonlinearities
and the theories involved are diverse and complex enough to require large
investments in computer resources or to pose significant analytical difficul-
ties. Forty years after Von Karman's classic Gibbs Lecture, engineers in
structural and solid mechanics continue to grapple with nonlinear problems.

A Symposium on Computational Methods in Nonlinear Structural and Solid
Mechanics was held in Washington, D.C., on October 6-8, 1980. NASA Langley
Research Center and The George Washington University sponsored the symposium in
cooperation with the National Science Foundation, the American Society of Civil
Engineers, and the American Society of Mechanical Engineers. The purpose of
the symposium was to communicate recent advances and foster interaction among
researchers and practitioners in structural engineering, mathematics (especially
numerical analysis), and computer technology. The symposium was organized into
21 sessions with a total of 85 papers. Most of these papers are contained in
the proceedings:

Noor, Ahmed K.; and McComb, Harvey G., Jr. (eds.): Coamputational Methods
in Nonlinear Structural and Solid Mechanics. Pergamon Press, Ltd., 1980.

Topics discussed in the symposium included
(1) Nonlinear mathematical theories and formulation aspects
(2) Computational strategies for nonlinear problems

(3) Time integration techniques and numerical solution of nonlinear
algebraic equations

(4) Material characterization and nonlinear fracture mechanics
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(5) Nonlinear interaction problems

(6) Seismic response and nonlinear analysis of reinforced concrete
structures

(7) Nonlinear problems for nuclear reactors

(8) Crash dynamics and impact problems

(9) Nonlinear problems of fibrous composites and advanced nonlinear
applications :

(10) Computerized symbolic manipulation and nonlinear analysis software
systems

This NASA Conference Publication primarily contains papers presented in
four research-in-progress sessions of the symposium which were reserved for
reporting unfinished research for timely communication of the status of the
work. The first five papers in this publication, however, are not research-
in-progress papers, but were presented in other sessions.

The included papers are largely as submitted. Same authors did not adhere
to the NASA policy of expressing all dimensional quantities in the International
System of Units (SI). This requirement has been waived, and a table of conver-
sion factors between U.S. Customary Units and SI is provided on page viii. Use
of trade names or manufacturers' names does not constitute an official endorse-
ment of such products or manufacturers, either expressed or implied, by NASA.

Harvey G. McCamb, Jr.
Ahmed K. Noor
Compilers
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ANALYSIS OF REINFORCED CONCRETE STRUCTURES WITH OCCURRENCE
OF DISCRETE CRACKS AT ARBITRARY POSITONS

J. Blaauwendraad, H.J. Grootenboer
Rijkswaterstaat, the Netherlands

A.L. Bouma, H.W. Reinhardt
Delft University of Technology, the Netherlands

SUMMARY

A nonlinear analysis of in-plane loaded plates is presented, which elimi-
nates the disadvantages of the smeared crack approach. The paper discusses the
elements used and the computational method. An example is shown in which one
or more discrete cracks are dominant.

1. INTRODUCTION

In reinforced and prestressed concrete structures the post cracking be-
haviour, the collapse mechanism and the magnitude of the failure load are in
most cases highly determined by the system of cracks that develops in the
concrete. It is therefore not surprising that in finite element programs for
the analysis of the nonlinear behaviour of concrete structures, besides the
modelling of the constitutive relations, considerable attention is devoted
to the inclusion in these programs of the occurrence of concrete cracks. In the
literature two methods of schematizing the cracks are to be distinguished,
namely: a method based on the possibility of discrete cracks along the bound-
aries of the elements and a method in which the cracks are assumed to be
distributed over the element or over parts thereof. Each method has certain
advantages and disadvantages. The aim of the reported study was to develop a
model in which the advantages of both methods were combined (ref. 1). The
model has been set up for the analysis of two-dimensional in-plane 1loaded
reinforced or prestressed concrete structures. In the model are considered
the various types of nonlinear material time-independent and time-dependent
behaviour, the performance of the boundary layer between steel and concrete
and the occurrence of discrete cracks within the structure.

The model is based on the finite element approach. For describing the
structure two types of elements have been developed: a triangular thin plate
element for schematizing the concrete. and a bar element for describing the
reinforcing steel or prestressing steel plus the bond zone with the sur-
rounding concrete. Both these elements are based on the hybrid method with
(wvhat has been called) natural boundary displacements. It is characteristic
of these elements that the stresses at their boundaries are always in
equilibrium with one another and with the internal loading.



Besides taking account of the discontinuity in the displacements on each
side of a crack, the model also takes account of discontinuity across a crack
of the normal stresses in the direction of the crack. The method of initial
strains is used for dealing with the nonlinear behaviour of the materials,
the displacements at the crack and the slip of the reinforcement.

The development of this model, which has been called the MICRO-model,
forms a part of the Dutch research project 'Concrete Mechanics" (in Dutch:
Betonmechanica). In this project concrete structures are studied along two
parallel lines of basic experiments and computational methods. The subprojects
for basic experiments concentrate on the fundamental behaviour of bond zones
and on the phenomenon of force transfer in cracks. The results of this experi-
mental work is fed into the subproject for computational methods. Apart of
the here described model for two-dimensional in-plane loaded structures, also
a model has been derived for the special case of plane framed structures in
which linear elements are used allowing for normal strains, bending strains
and shear strains. Because of the use of greater elements, this last model
was called the MACRO-model. This paper will be restricted to the MACRO-model.

Discrete cracks versus
"smeared-out" cracks

The method with discrete cracks:
- gives better insight into the relative displacements at a crack and
the crack spacing;
- offers the possibility of describing the stress peaks and the dowel
forces in the steel at a crack;
— can take account of the relationship between aggregate interlock and
displacements at a crack;
- is often better able to schematize dominant cracks and their effect on
behaviour.
A serious disadvantage of this method was that cracking was restricted to oc-—
cur only along the element boundaries (ref. 2,3). This results in a high de-
gree of schematization of the cracking pattern and considerable dependence
on the subdivision into elements. Also in consequence of the detachment of the
elements the system of equations must each time be re—established and inverted

or decomposed.

Because of these disadvantages, in general, the discrete crack model has
been abandoned in favour of the approach in which a crack is smeared or spread
out over a whole element or over part of an element. The crack is thus incor-
porated into the stiffness properties of the concrete, which becomes aniso-
tropic in consequence (refs. 4,5). Its great advantage is that cracking is
conceived as a phenomenon like plastic deformation and can therefore be
analyzed by the same methods, with which a good deal of experience has already
been gained. The disadvantages of this method are due to '"smearing out" the
cracks. Especially the assumption about the stiffness perpendicular to the
crack in an element with few or no reinforcement forms a problem. The reason
is that in reality this stiffness not only depends on the element and the
position of the crack herein but also on the circumstance if the element



is a 1link in a series connection of elements or a link in a parallel connec-
tion of elements. With this model the crack spacings and displacements at the
cracks are difficult to calculate, even if a fine-meshed network of elements
is used. This has its repercussions on the modelling of the aggregate inter-
lock which highly depends on the displacements at the crack. .Whether these
drawbacks constitute a serious objection will depend on the kind of

structure to be dnalysed.

In the MICRO-model a method of crack schematization is adopted which com—
bines the advantages of both methods by treating cracks as (what they in
reality are) discrete material boundaries for which the displacements and the
normal stresses in the crack direction may be different on both sides. These
"discrete" cracks may pass through the element mesh at any place in any direc-
tion and are continuous over the element boundaries.

Hybrid element model and
natural boundary displacements

The hybrid element model with natural boundary displacements is used for
the derivation of the force-deformation relations per element. In this model
an assumption is made with regard to the distribution of the stresses in the
element. The distribution of the displacements of the element boundaries is
likewise assumed. This model offers the following advantages:

— the distribution of the stresses in the various types of element can be
suitably interadjusted;

— discontinuous distribution of the displacements in an element can be taken
into account quite simply in this model. Such discontinuity occurs if a
crack passes through the element;

— the favourable experience previously gained with this type of finite element
model can be used;

— the model offers the possibility of adding extra stress functions for des-
cribing special situations to the stress functions already existing;

- by adjusting the description of the displacements of element boundaries to
the stress distribution at these boundaries it is ensured that the condi-
tions of equilibrium are exactly satisfied at the boundaries. The advantage
of this is that the stresses at a section along the element.boundaries are
always in equilibrium with the external loads.

The method of adjusting the description of the displacements of the
element boundaries to the stress field so that inter-edge equilibrium is
achieved is also called the method of natural boundary displacements
(ref. 6). In this method we use for the description of the element boundary
displacements a separate set of degrees of freedom per element boundary
instead of the usually employed degrees of freedom in the element corners.
In the next chapter the characteristics of the developed elements will be
briefly discussed. For an extensive derivation see reference 1.



2. USED ELEMENT

Triangular plate element

The concrete is described by triangular thin plate elements. For the un-
cracked element we use per element boundary four degrees of freedom for the
description of a linear displacement distribution in normal and tangential di-
rection. In the element linear interpolation functions are used for the des—
cription of the stresses.To restrict in an element with twelve degrees of free-
dom the number of stressless displacement possibilities to the three rigid-body
displacement modes, it is necessary to have at least nine independent stress
parameters. A linearly distributed stress field for a thin plate which satis—
fies the internal equilibrium conditions in every point of the element only
has seven independent stress parameters. So to satisfy the condition of nine
independent stress parameters the second equation of Cauchy which states that
Oy equals Oy in every point of the plate, is relaxed into the condition that
tﬁe area integral per element of the shear stresses © and © must be
equal ( [ o _dv =) o dv ). Y v

v Txy v Tyx
e e
Because the linear stress distribution per element boundary is uniquely re-
presented by the four stress resultants per element boundary,full inter-—edge
equilibrium is achieved.

Figure 2.1 Degrees of freedom of an uncracked plate element.

If a crack has to occur in an element, this crack is assumed to form,

in a straight line from one boundary of the element to another. Within a crack
three additional degrees of freedom are introduced, two for the description of
a linear varying crack opening (u; , uj) and one for the description of the
parallel shift (v). (See figs. 2.1 to 2.4.)

In the vicinity of a crack the stresses may vary greatly due to dowel for-
ces in the rebars or bond stresses between rebars and concrete.
To take account of these stress variations and the possibility of a disconti-
nuity at a crack of the normal stress in the crack direction , the linear
stress field of the uncracked element is extended for a cracked element with
a stress field which is discontinuous across the crack.
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Figure 2.3 Distribution of the
‘'stresses, from the additional
stress field, along the boundaries
of a plate element with one crack.

Figure 2,2 Displacement
possibilities at a
crack.

To preserve full inter-edge equilibrium in a crack-crossed element bound-
ary it is necessary to add to the linear displacement interpolation a discon-
tinuous displacement interpolation. This is done per crack-crossed element
boundary with the additional degrees of freedom Au’ and AV°.

AvV°

J}‘=€>Av°

o
Au
Figure 2.4 Extra degrees of Figure 2,5 Distribution of the
freedom at cracked element stresses, from the additiomnal

stress field, along the boundaries

boundaries.
of a plate element with two cracks.

In an element a second crack is permitted only if this crack runs from the un-
cracked edge to the intersection of the first crack and the element boundary
(see figure 2.5). Now, the additional stress field is discontinuous over both
cracks and we find additional degrees of freedom along all three element

boundaries.



Rebar element

A linear bar element is used for the schematization of the embedded steel
and the properties of the contact zone for bond between steel and concrete. The
distribution of the forces in the bar element is adjusted for the distribution
of the stresses along the boundaries of the triangular plate element with which
these bar elements are to be associated. In the uncracked plate element a linear
stress distribution has been adopted . So the shear stress T along the rebar
and the normal stress 0 are also linear, which corresponds to a quadratic
distribution for the normal force (F) and shear force (S) in the bar element.
The distribution of the shear force in an element has been so chosen that the
average shear force is always zero. This ensures that the bending moments in
the bar remain small and that they are zero at the ends of the bar. It is still
a point of discussion if this is permitted for all situations.

This assumption was necessary to restrict the number of stressless displace-
ment modes to three. Because of the small influence of the shear flexibility
on the structural behaviour it seems to be an allowable assumption.

- - _ -
F 1 s s? 0 0 B(1)
T 0 1 2s 0 0
S| _ 0 o0  1*-38* 2sl-3s® B(5)

0 ] L0 0o 0 ~6s 21~6s

Stress interpolation for uncracked rebar element; s is the coordinate
along the element edge and I the length of the edge

In expectation of the results of the other study on the real properties
of the boundary layer the constitutive equations for the combined steel/
boundary layer element are taken as

- T s -1 T
£ UEEJ 0 0 FdF
A 0 = 0 0 (
- £
R A
AJ_ g 0 E G(E
\—..J L _JL _J

where: € strain of the steel

A[l = slip in boundary layer

Y'' = deformation in steel due to shear force

Al = 1indentation of boundary layer

A = cross—sectional area of steel

E = modules of elasticity of steel

K = elastic stiffness of boundary layer with respect to slip

D = dowel rigidity of steel

B = elastic stiffness of boundary layer with respect to inden-

tation
The displacements at the element boundaries are described with the aid of
the displacement quantities u and ¥ along the outside of the boundary layer
and the displacements u and v at the outer ends of the steel bar.



. The first set of degrees of freedom corresponds with the degrees of freedom of
+ the plate element while the second set provides for the continuity of the nor-
mal and shear force over the length of the reinforcement.

If the bar element is intersected by a crack, then -as in the glate
element- the stress functions and displacement function are extended by adding
extra fields. These fields are compatible with the extra stresses and displace-
ments used in ‘the plate element. ’ Aﬁ

.

>

/
-

-

(7] a
& o T
. V27 77 u s T

| er22707727772 ||,

g
T l
Figure 2.6 Degrees of freedom of Figure 2.7 Extra stress fields and
an uncracked bar element. degrees of freedom in a bar

element intersected by a crack.
3. COMPUTATIONAL METHOD

The finite element stiffness relations and equations were derived by using
a Galerkin approach for the kinematic relations and the equilibrium conditions
(see reference 1). This results for a structure without any cracks in the next
set of equations:

sv® =k + Ag; - Bg

Herein v°® are the degrees of freedom, Kk represents the applied load, € is
the sum of all initial strains and ¢ is the volume load. In the method of
analysis envisaged in the MICRO-model, the strains are split up into an elastic
part and an initial part. The elastic strains are those which would occur if
the material displayed ideal linearly elastic behaviour. The initial strains
are used to account for all nonlinearities such as plastic deformation, creep,
shrinkage, etc. When a load increment is applied the set of equations is

solved iteratively by adjusting the initial strains until all criteria of
nonlinearity are fulfilled to a certain accuracy.



When cracks occur, an additional stress field with stress parameters B
additional degrees of freedom 2% are introduced (v.s.).

Now it can be shown that the set of equations is replaced by two systems of
equations: :

and

5° = k + 4’ - Bg - °” -~ DB
530 = el - B - E®

Herein vcpare the number of degrees of freedom on the crack faces (vs.) and »°
the additional degrees of freedom on the element boundaries at the point of in-
tersection with a crack.

The split up of the equations in two sets is done to avoid the alteration of
the origional system matrix S and the renumbering of the degrees of freedom
»® . During the iterative solution procedure both sets of equations are solved
in sequence. In this procedure we calculate p? from the first set of equations
using for the additional stress parameters [ the value from the preceding
iteration. In each iteration the initial strains €l and the internal crack
displacements v¢r are adjusted to the criteria of nonlinearity c.q. the
stress conditions for a crack.

To take into account the internal stress redistribution due to a crack, one
element crack at a time is allowed to occur. Only when the normal stresses on
the crack surfaces have become sufficiently low, can another cracked element
occur.

Each time when a new crack is formed the matrix § has to be formed and de-
composed again.

Because the bandwidth of this matrix stays very small this requires much less
time than a reformation and decompositon of matrix S would take,

To decide when an element is cracked and to determine the direction of the
crack we use the average stresses over an element. When these stresses are in
the range in which the crack criterion is valid and supercedes the criterion
more than will occur in other elements, a crack is assumed to form (with the
restriction that the normal stresses on the existing crack faces are small
enough). A crack is placed through the centre of the triangular element, ex—
cept if a crack already ends on the boundary of the element. In that case the
new crack proceeds from this existing crack.

In reality there is a local stress peak near the tip of a crack. This causes
further spreading of a crack, even if the average stresses in the vicinity
thereof —apart from the stress peaks— are below the cracking criterion. In the
MICRO-model these highly localized stress fields are not included. The effect
that, in an element adjacent to the end of an existing crack, a crack will
develop at lower average stresses than it would if there were no cracks pre-
sent, is here dealt with by reducing the cracking criterion for these elements.
The calculations that have been performed show a reduction to about 0.7 to be
satisfactory. A crack, once it has been introduced into the model, remains in
existence. The procedure does however take account of the possibility that, on
further loading or unloading the structure, it may occur that a crack closes
up again by compression, but as soon as tensile stresses act across a closed
crack, the latter opens again. Transfer of compressive stresses across a crack
is possible only for zero crack width.
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v7or determining the displacements in the cracks and the initial strain for the
slasto-plastic materials a fictitious visco-plastic model is used. By doing
this the iteration process can be conceived as a fictitious creep process with
a time interval At between each two successive iterations and a loading of
the viscous element equal to the unbalanced stresses (A0) . Per iteration the
increase in the internal crack displacements or initial strains is

AvCR ( AeI) = KAc

To ensure that the iteration process is stable the value of K must not be
taken too large (see reference 7). The number of iterations needed per load
increment is highly influenced by the number of cracks present in the struc-
ture. In order to speed up the iteration process, whenever a number of cracks
have formed, the system matrices S and S are changed in order to take into
account the condition that the normal stresses on the faces of open cracks must
become zero.

4. EXAMPLE OF REINFORCED BEAM WHICH FAILS IN SHEAR

After several calculations in which the MICRO-model had proven its ability to
simulate bending failure (see reference 1), a reinforced beam which fails in
shear was analysed with the model. This beam is one of a series of beams which
were tested in the Stevin Laboratory of the Delft University of Technology in’
the Netherlands in a program of research to investigate the influence of beam
depth and crack roughness on the shear failure load (ref. 8). The beam was
loaded as shown in figure 4.1.

I

R
M~
A A
: 3022
| 550 ; 2160 mm | 1000 2160 1 550
I T r T H

Figure 4.1 Shape and manner of loading of tested beam.

On account of symmetry of the structure, the boundary conditions and the
loading, it was sufficient to confine the analysis to one half of the struc-
ture. The network of elements, the restraints and support and the external
loading of this half structure have been shown in figure 4.2.

In the experiment as well as in the analysis abrupt failure occured, caused by
crushing of the concrete at the tip of an inclined (shear) crack. At failure
the stresses in the rebars were still below the yield stress.
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Figure 4.2 Network of element.

The experimentally determined failure load and the failure load found from the
analysis were very close to each other (112,1kN and 112,4kN). The load deflec-
tion curves for the experiment and the analysis are given in Fig. 4.3.

140
120
— —
R 100 -
/
(k) ~ Analysis
80
60
40
20
] 1 i 1 1 —1 Il 1 i 1 1 H
0 1 2 3 4 5 6 7 8 9 10 11 12 mm

Figure 4.3 Load-deflection diagram.

It follows from the load-deflection curves that the analysis leads to a some-
what lower stiffness than was registered in the experiment. An explanationr for
this lower stiffness may be a too low temnsile strength for the concrete in the
analysis, which results in the premature occurrence of cracks and a bend in the
load-deflection curve at a lower value of .the load than in the test. The maxi~
mum bond stress between steel and concrete may have been chosen too low as well.

Fig. 4.4 shows the crack patterns, just before failure, according to experiment

and analysis. For convenience of comparison the reflection of the right part
of the beam has been displayed in this figure.
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Figure 4.4 Crack pattern experiment and analysis.

It can be seen from these crack patterns that the beam fails due to an inclined
shear crack in the experiment. This inclined crack was also found in the
analysis. In fact there is a very good agreement between the crack patterns of
the test and the analysis. Although not much information about the width of the
cracks in the experiment is available, it seems that in the analysis somewhat
larger crackwidths were found than in reality. This corresponds with the
smaller stiffness as discussed above and can also be the result of a slightly
low value for tensile strength of concrete and maximum bond stress.

5. SUMMARY AND CONCLUSIONS

A finite element program has been presented for the analysis of two-dimensional

in~-plane loaded concrete structures. The program makes use of seperate elements

for the description of the concrete and the rebars including the bond zome with

the surrounding concrete. When cracks occur they are handled as being discrete.

Displacements and stresses may be discontinuous across a crack. Cracks may pass

through the finite element mesh at any place in any direction and are continu-
. ous over the element boundaries.
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The elements are based on the hybrid method with natural boundary displacements,
resulting in stresses at the inter—element boundaries which are always in equi-
librium with one another and with the external loading. The model takes care of
the different types of nonlinear material behaviour. Comparison of the results
of experiments with the results of analyses shows that the model is capable of
obtaining a good prediction of the deformation, crack pattern, crack widths,
failure load and internal stress distribution of concrete structures under
in-plane static loading.
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COMPUTATIONAL MODELS FOR THE NONLINEAR ANALYSIS
OF REINFORCED CONCRETE PLATES
E. Hinton, H.H. Abdel Rahman and M.M. Hug

University College of Swansea

SUMMARY

A finite element computational model for the nonlinear analysis of
reinforced concrete solid, stiffened and cellular plates is briefly outlined.
Typically, Mindlin elements are used to model the plates whereas eccentric
Timoshenko elements are adopted to represent the beams. The layering
technique, common in the analysis of reinforced concrete flexural systems, is
incorporated in the model.

INTRODUCTION

The present studies were motivated by the need to develop finite element
computational models suitable for the efficient and accurate nonlinear
analysis of reinforced concrete bridge decks and flexural systems. In
particular solid as well as stiffened and cellular plates are of interest and
the full load-displacement history is required.

Previous studies have generally been based on Kirchhoff plate and Euler-
Bernouilli beam representation and one novel feature of the present studies
is the use of Mindlin plate and Timoshenko beam theories. Apart from the fact
that transverse shear deformation effects are then automatically taken into
account, the use of Mindlin/Timoshenko models allows the adoption of clo)
rather than C{1) finite elements in the discretisation pProCcess.

In the nonlinear analysis of reinfeorced concrete plates it is important
to allow for the gradual spread of cracking and yielding of the concrete over
the plate thickness as well as the yielding of the steel in the reinforcement.
To cater for these effects the well-known layered approach 1s adopted. Tension
stiffening, which will be described later, is included in the concrete model
and various unloading curves are considered. As well as providing a better
representation of the reinforced concrete behaviour during cracking, tension
stiffening appears to have a beneficial effect on the numerical stability of
the nonlinear solution scheme.

The authors have successfully experimented with a variety of nonlinear
solution schemes. In the present context, experience points to the use of
either the Quasi-Newton method with large load increments and a fine con-
vergence tolerance or the initial stiffness method with small load increments
and a coarser convergence tolerance. The results quoted here have been
obtained using the initial stiffness method with small load increments after
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initial cracking.has occurred and a coarse convergence tolerance (1%) on the
displacements norm.

Alsc quoted in this paper are results from a numerical experiment with a
tentative cellular plate model based on a beam-plate representaticn. A layered
beam models the webs whereas a layered plate with zero rigidity in the veoid
region is used to model the flanges. The transverse shear rigidity of the
plate in the plane perpendicular to voids is suitably modified. For cylindrical
volds the beams have variable width over the cross-section.

The basic formulation is now described in a little more detail.

BASIC FORMULATION

Main assumptions In Table I the main features of the Mindlin plate formul-
ation are indicated. (NB: The Timoshenko beam formulation, which is based on
similar concepts, is omitted.) In the uswual Mindlin plate representation
integration through the plate thickness is performed explicitly prior to dis-
cretisation and therefore the present model is really a degenerated 3D model
with restricted (flat) geometry. The main assumption is that normals to the
plate midsurface remain straight but not necessarily normal after deformation.
Thus the displacements u, v and w at any point in the plate with coordinates
(x,y,z) can be expressed as

ulx,y,z) uo(x,y] -z eX[x,y)
vix,y,z) = vo(x,yJ -z ey[x,y) (1}
w(x,y,z) wo[x,y]

where Us» Vg and w, are the displacements at the plate midsurface (xy plane]
in the x,y and z directions respectively and ex and ey are the rotations of

the normal in the xz and yz planes respectively.

The strain-displacement relationships may therefore be expressed as

€ Z €

-=m —f
_E:_ = + [2)
o €
= =5
in which the membrane strains g_ = [u Y , u + v 1
=m o,x’ "o,y’ "o,y 0,X
T
i = |- , - © , — (6 + 6 ]
the flexural strains £ [ ex,x v,y ( %,y V. x 1
and the shear strains e = [w -0 ., w -8 ]T
=5 0,X x’ o,y v

and where u

O
-
X1

14




Elasto-plastic behaviour of concrete Concrete is idealised as an elastic-
perfectly plLastic material in uniaxial compression. The behaviour of concrete
in biaxial stress states is described by an idealised version of the failure
envelope obtained by Kupfer et al. (Ref.1). A Von Mises failure surface
is used in the biaxial compression zone. See also reference 2. Concrete
which has yielded can sustain compressive strains smaller than a limiting
strain € . However, when the concrete reaches this strain it is assumed

cu . - . .
to crush. The crushing surface adopted here is given as

cle) = €2 -¢ e +e2 + §-y - € =0 (3)
- X X 'y y 4 'xy cu
where ¢ and e are the strains in x and y directions and ¥y is the shear
strain. y xy

In tension, the concrete is assumed to behave elastically until the
tensile strength (f!) is reached. The concrete then cracks in a direction
orthogonal to the stress direction and loses strength. An unloading curve is
assumed to account for tension stiffening in the cracked concrete. The stress
level in the cracked concrete is interpolated using the tension stiffening
curve depending on the degree of straining in the concrete. Cancrete cracked
in one direction is assumed to have uniaxial properties in that direction only.
Concrete cracked in two directions is assumed to lose all of its strength.

The constitutive relations of the concrete are continuously updated
according to the stress state in the concrete. However, it must be noted that
the shear rigidities always retain their elastic values. The constitutive
relations can also be written in partitioned form by separating out the
membrane-flexure and shear strain energy terms.

Yielding of steel The steel reinforcement is smeared into steel layers which
are assumed to be in a state of uniaxial tension or compression. When the
longitudinal stress exceeds the proportionality 1limit, the steel starts to
yield. Strain hardening of the steel can be included if the strain hardening
parameter, H' is known. The constitutive relation for yielded steel is

given as

_ N E
o, Oy * ey E|[ {EZHT} (4)

in which o and e, are the stress and strain in steel, E is the Young's

Modulus and oy is the yield stress.

Slab-beam idealisation The first step in the analysis of a slab-beam system
such as the one shown in figure 1 is to discretize the structure into a

suitable number of plate and beam elements. In order to simplify the analysis,
the stiffeners must be attached along the mesh lines of the plate elements.

The selectively integrated, isoparametric 9-node Hetercsis element
(Ref.3) is used to model the plate. A hierarchical formulation is adopted
to represent all degrees of freedom. Thus the shape functions Ei in Table I
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are constructed as follows:

N1[E] ... to NB(E) are the 8-node Serendipity shape functions and NQ(EJ
is the bubble shape function (1-22) (14-n2) associated with the 9tN internal

node. Note that a.(e] = [u.IE), v.EE), w.(e], 6 .(e], 6 .(EJ], a (e) to
—i i i i X1 vi -1

a (e) are the vectors of displacements at nodes 1 to 8 on the boundary of the

;?ement and a (e)
=9

central node 9. To obtain the displacement vector at node 9 the following
expression 1s used

is the vector of the degrees of freedom at the hierarchical

e) (5 o) Ei(e) . Eg[e) s

&
al = 1 N
1=1

The 8-node Serendipity representation can be obtained if all degrees of
freedom at node 8 are constrained to zero. If they are all left free, a
8-node Lagrangian representation is obtained. For the Heterosis type rep-
resentation, only the hierarchical lateral deflection at node 38 is restrained
to zero and (5) is used to interpret displacements at node 9.

The 3-node isoparametric Timoshenko beam element is adopted for the beams.
The reader should consult reference (4) for further details regarding this
element. Beam elements can be located along the mesh lines of the plate
elements. The properties of each element are calculated first in the local
direction and then transformed to the global cocordinate system.

Since the stiffener element is assumed to be monolithically connected to
the plate, compatibility of deformation along the juncticn line between the
beam and the plate is enforced since a related system of displacement functions
is used for the plate and beam elements. As the details of the stiffness
matrix evaluation are standard they are not included here.

The layered beam and plate elements are shown in figure 2.

Nonlinear solution A very small load increment is first applied to the
structure, and the cracking load is then estimated. The size of the successive
load increments 1s chosen to be egual to 0.1 times the cracking load as
suggested by Johnarry (Ref.5); this improves the rate of convergence since
nonlinearities are induced gradually in the structure. For each linearised
increment, the unknown displacements are obtained using the initial uncracked
stiffness matrix. Strains calculated at the centre of each layer are taken

as representative for the whole layer. Stresses are then calculated using

the material properties from the previous material state. After checking the
state of stress for possible yielding, cracking or crushing, the internal nodal
resisting forces can then be calculated and compared with the external forces.
The lack of equilibrium between internal and external forces is corrected by
applying the out-of-balance or residual forces. The out-of-balance forces

are successively applied through a series of iterations of the solution and new
corrections to the unknown displacements are obtained until the equilibrium and
the constitutive relations are satisfied within a certain allowable limit.
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The following convergence criterion is used:

1 1
(8a' 6a)?/(a’ a)® < 0.01 (6]

where 8a and a are the vectors of iterative and total displacements respectively.

The analysis is terminated when convergence is not achieved within a
specified number of iterations. This usually occurs when a structure is about
to fail. An estimate of the failure load can then be obtained.

SOLID AND STIFFENED PLATES

Corner supported slab A corner supported doubly reinforced concrete slab
(Ref.B) is analysed using & 3x3 mesh in & symmetric quadrant. Initially it

is assumed that there is no tension stiffening. Crack patterns on the lower
surface of the slab for two load levels (12 kN and 62 kN) are shown in

figure 3. Figure 4 shows the load displacement curve. After the steel yields
the norm of the out-of-balance membrane forces is rather large even though the
displacement convergence tolerance is satisfied. When the displacement tol-
erance is decreased from 1% to 0.1% after the steel yields,an improved result
is obtained as shown in figure 4.

When tension stiffening is used, improved displacement values are

obtained. However, this results in higher failure loads. When the unloading
part of the tension stiffening curve is extended, better results are obtained
for the displacements but the failure loads are still high. When a finer

tolerance is used after steel yielding,excellent results are obtained as shown
in figure 5.

Stiffened slab The load-central deflection curve predicted by the present
model for a reinforced concrete T-beam tested by Cope and Rac (Ref.7) are
given in figure 6, which also includes some gecmetric details of the beam.

The load-deflection graphs obtained by Cope and Rao, both experimentally and
using a finite element shell formulation, are also reproduced in figure 6.

The good agreement between the load-deflection graphs predicted by the present
analysis and both Rac’'s experimental and numerical analyses shc''s that the
proposed approach provides an inexpensive yet fairly accurate analysis for
reinforced concrete slabs with RC beam stiffeners.

REINFORCED CONCRETE VOIDED PLATES

Voided reinforced concrete and prestressed concrete plates are widely used
for their economic advantages. Although the behaviour of such structures has
been studied in the elastic range (Ref.8 , Ref.3), very little experimental
" and analytical work appears to have been carried out on the behaviour of these
structures in the overloading and ultimate stages. In the elastic analysis,
equivalent values of the flexural, torsional and shear rigidities of a voided
plate can be calculated in different ways (Ref.9 , Ref.10) and used in a
finite difference or a finite element analysis of an equivalent orthotropic
solid plate. The nonlinear analysis is, however, rather more complex. The
spread of plasticity and nonlinearities due to cracking and crushing of concrete
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through the depth of the plate must be taken into account. A nonlinear finite
element analysis using a 3D or shell formulation to represent different
structural elements of the voided plate seems ideal. Unfortunately such a
formulation, though feasible, is very expensive. In the present approach, a
less -expensive approach to the nonlinear analysis of RC voided plates is
tentatively suggested. The analysis is based on the formulation of RC
stiffened plates described earlier, where the voided plate is assumed to con-
sist of voided plate elements representing the upper and lower flanges and
beam stiffeners representing the webs.

The basic assumption is basically that of Mindlin: a transverse plane
normal to the middle plane of the plate remains plane but not necessarily
normal after deformaticn, thus implying that the deformations of both flanges
are related. This assumption may be justified for voided slabs with large
numbers of voids, which have an overall bending behaviour predominantly in the
longitudinal direction. In situations where the upper flange is directly
loaded by a concentrated load, better results can be achieved if an over-
lapped mesh is used for a small part around the loaded area to represent the
upper flange solely while the original mesh in this part represents the lower

flange.

Documented experimental evidence for such structures is provided by
Elliott, Clark and Symmons (Ref.11). In this work the results of a quarter
scale model reinforced concrete voided bridge have been reported. The geo-
metrical details of the slab are summarised in figure 7. A number of tests
were made to study the performance of the slab in the service as well as the
over-loading stages and finally an ultimate load test was carried out. This
example has been solved using the proposed approach for voided slabs. The
discretization and cross section representation of a symmetric guarter of the
plate is given in figure 8, while the load-central deflection graphs obtained
experimentally and analytically are compared in figure 8. It is reported that
the cracking load was nearly equal to the working load which is in agreement
with that predicted by the proposed model. The agreement between the exper-
imental and analytical graphs shown in figure 9 is very encouraging. The
experimental results show that the slab failed by the formation of a mechanism
which involved longitudinal shear/flexural yield lines and transverse hogging
flexural yield lines. The analytical study, however, slightly overestimates
the failure load since shear failures cannot be predicted by the present model.

CONCLUSIONS
The proposed computational model for the nonlinear analysis of solid and

stiffened reinforced plates provides an inexpensive and reasonably accurate
approach which can be extended for use with voided plates.
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TABLE I.- MINDLIN PLATE FORMULATION

Virtual work eguation

T T
I § £, 94 av + I § £, %5 av - j 6u bdv- J §u tds=0
v v St

where
displacements u = [u. v, w]T virtual displacement Sy = [6u, v, dw]T
in-plane strains g, = [u . v , t v ]T 6e, = (Su _, dv , du  + dv ]T

=1 x* Tyt Ly X =1 % .y B} %

- _ _ T - _ _ T

shear strains £ [w.x 8 vy ey] 8g, [Gw.x 58 , 6w v 5ey]
in-plane stresses o, = [0, o0, T ]T §g, = [0 _, 80, &7 ]T

9 %' % Txy =1 x' Tyt Tixy
shear stresses 9, = [t . T ]T g, = [81 ., 61 ]T

=2 xz' ‘yz =2 xZ vz

Incremental stress/strain relationships
dg, = D, de,
ag, = 0y de,

Elastic Plastic

1 v 0

T -1

o -p-—E- 1 4 o o, ~o-0 P Pe) o fa. 22
U C PN - 4] %% 2y = 39,

0 0 J-v

2
in which F is the yield function

oot | 0 FeFlg, M, As-3%an
=2 2(1+vla

a is a modification factor (usually' a = 7,2)

1 i
s} 1 1]
a 0 1
Bag™ N5« 0
o Ni-y
Ni.y Ni.x

A 1s the proportionality constraint

H is the hardening parameter

Finite element discretization

£=§!igi

£ I8y 8

1
0 a, = fu, v, w, 0 .8 ]T

24 17 Ve M1 Pyt B
-z
0
My O 8= |0 S P Ny o
0 w2y 0 0 Ny 0 N,
_ZNi.y _ZNi.x

Stiffness Matrices

T T
= D av
K3 jEu By Byy v - JEZi 2, By
v v

Resigual forces

T -
where the consistent nodal forces ii = { Ei b dv o+ [ El tas
\J
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Figure 1l.- Typical slab-beam system and
its structural idealisation.

=9, Y.
- ¥
2 x
3

(a) Layered finite plate element. (b) Layered beam element.

Figure 2.~ Layered plate and beam elements.
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NEWTON'S METHOD: A LINK BETWEEN CONTINUOUS AND
DISCRETE SOLUTIONS OF NONLINEAR PROBLEMS

Gaylen A. Thurston
Langley Research Center

ABSTRACT

Newton's method for nonlinear mechanics problems replaces the governing
nonlinear equations by an iterative sequence of linear equations. When the
linear equations are linear differential equations, the equations are usually
solved by numerical methods. The iterative sequence in Newton's method can
exhibit poor convergence properties when the nonlinear problem has multiple
solutions for a fixed set of parameters, unless the iterative sequences are
aimed at solving for each solution separately. The theory of the linear
differential operators is often a better guide for solution strategies in
applying Newton's method than the theory of linear algebra associated with
the numerical analogs of the differential operators. 1In fact, the theory for
the differential operators can suggest the choice of numerical linear operators.
In this paper the method of variation of parameters from the theory of linear
ordinary differential equations is examined in detail in the context of
Newton's method to demonstrate how it might be used as a guide for numerical
solutions.

INTRODUCTION

Nonlinear mechanics problems can be formulated as nonlinear differential
equations and associated boundary conditions. One approach to solving these
nonlinear equations is Newton's method. Newton's method replaces the nonlinear
equations with an iterative sequence of linear differential equations. The
present paper emphasizes that each iteration step consists of two separate
operations. The first operation, referred to as linearization, is the
derivation of the linear differential equations. The second operation is the
solution of the linear equations and is referred to by the name of the method
of solution for the linear system (e.g., power series, asymptotic series,
finite-differences, finite-elements, successive approximations, or boundary
integrals).

The emphasis on defining the iteration in Newton's method as two suc-
cessive operations is to prevent confusion between Newton's method and the
familiar Newton-Raphson method for a set of nonlinear algebraic equations. The
confusion arises when the second operation is purely numerical and depends on
a discretization operation. In this case, the operation of discretization
can be applied to the nonlinear differential operators followed by the linear-
ization of the Newton-Raphson method. Ortega and Rheinboldt, (ref. 1), prove

that the operations of linearization and discretization commute. Theoperations
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result in the same set of linear algebraic equations for each iteration step
for both the Newton-Raphson method and Newton's method. The proof that the
two operations commute requires that "the discretizations are carried out

in the same way."

The present paper examines problems where the discretizations are not
carried out in the same way. The choice of discrete model is affected by the
theory of the linear differential equations. Examples of these problems are
boundary-value problems where multiple solutions exist for a fixed set of
parameters. This class of problems includes periodic solutions of nonlinear
dynamics problems and static buckling problems with bifurcation points and
with limit points.

Newton's method, that is, the operation of linearization before dis-
cretization, supplies two kinds of information for problems with multiple
solutions. The first kind is qualitative information which is related to the
convergence of the iterative procedure and is useful in itself. The second
kind of information is quantitative information that directly affects the
discrete model. The literature for linear differential equations is vast
and much of it provides insight into the convergence properties of Newton's
method. Rather than attempting a general review of applicable theory, this
paper examines one method in detail as it relates to Newton's method. The
method examined is variation of parameters as it is applied to systems of
ordinary differential equations. The theory is examined first, followed by a
discussion of the application of the theory to discrete solutions of nonlinear
problems with multiple solutions.

The main body of the paper on variation of parameters is preceded by a
preliminary section. This section discusses the linearization operation in
Newton's method. Once the equations are linearized, different versions of
Newton's method receive different names in the literature. These
versions are briefly reviewed. The section also discussed convergence of
Newton's method as it pertains to nonlinear problems with multiple solutions.
The theoretical results from variation of parameters suggest changes in
dependent variables that are determined by the given problem and, therefore,
are applicable to adaptive computer solutions. A final section indicates
the general nature of such adaptive computer solutiomns.

NEWTON'S METHOD
Fundamental Concepts

Nonlinear mechanics problems that are formulated as nonlinear ordinary
or nonlinear partial differential equations can be solved using Newton's
method. The basic idea in Newton's method is to expand the nonlinear operator
about an assumed or an approximate solution. This expansion yields a new
nonlinear operator that operates on an unknown correction to the approximate
solution. It is assumed in Newton's method that nonlinear terms in the
correction are small compared to linear terms, and the nonlinear terms are
temporarily neglected. The resulting linear differential equations are
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solved for an approximate correction which is added to the assumed solution to.
make a new approximation. The procedure is repeated until the corrections are
small. At each iteration step, the residual error in the solution of the non-
linear problem is a function of the nonlinear terms neglected in the previous
iteration step. Convergence of the iterative sequence is almost assured if
the nonlinear problem has a unique solution. When the nonlinear problem has
multiple solutions, convergence is not assured in Newton's method unless
provisions are made to converge to only one solution for each iteration
sequence. Examples of problems with multiple solutions are static buckling
problems with bifurcation points and with 1limit points and certain nonlinear
vibrations problems. The theory of linear differential operators is useful

in guiding numerical computations so that Newton's method converges to the
desired solution branch.

The linear operator in Newton's method is called the Frechet derivative,
and it is derived from the nonlinear differential operator for the problem.
Let the nonlinear differential operator be P operating on a scalar function
or vector function y. The nonlinear problem is

P(y) =0 1)

plus associated initial conditions or two-point boundary conditions. Denote
by y, the approximation to the solution of equation (1) after the mth
iteration step, and denote by Oypt+1 the correction to yp. Then the Newton
iteration process solves recursively the equations

P'ly_ 1y = -ply__,] (2a)
+ 8y_ m=1,2,3,.... (2b)

The operator P'[ymrl] in equation (2a) is the Frechet derivative. Formal
definitions of the Frechet derivative appear in texts on functional amnalysis,
reference (2). TFor nonlinear differential operators operating on continuous
functions, the Frechet derivative consists of the linear operators that appear
in a Taylor series expansion in several variables. The expansion is in terms
of the dependent variables rather than the independent variables, reference (3).

Examples of érechet Derivatives
For example, consider a single nonlinear equation.
a’y  fay\’
— + Cl—] + A siny - Fsinwt =0 (3

dt2 dt
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with C, A, F and w constants. The linear variational equation,
equation (2a), for equation (3) is

2
d”dy dy ddy
5+ 2C —ml) —=+ X (cos y__;) sy = -Ply__,] (4a)
dt dt dt
d2y dy 2
Ply ]1=—22L,of[—=L1) 4+ Asiny -~ F sin wt (4b)
m-1 dt2 dt m—-1

The Frechet derivative for the nonlinear operator is the operator

' da () dym—l d
P'ly 1C) = 2 +2CT (—i:()+>\cos V.q () (5)

The Taylor series expansion in Newton's method is readily extended to
partial differential operators. A second example is a nonlinear strain
expression

du . Ow _ Ou du , 9v dv _ oW 3w 6)

—_— o — —_—

€z T 9z T 9x " 9z 9z ' 9x 9z | 9x oz

Then

-1 m
e! [y 1@y ) = + — +
xz " m-1 n 2z ox oxX 3z
ou 9du ov 3dv oV odv
+ m—1 m o, m—-1 m m—1 m
o0z 9% ox 2z oz ox
ow 1 Bdwn 3wm_l Bdwm
+ —= + (7)

In addition to the linear variational equations of Newton's method, the
Frechet derivative appears as part of the chain rule of differentiation.
If the nonlinear operator is written P(y(x),x) to emphasize that y 1is a
function of the independent variable, the total derivative of P is

30




P _ _,ro7(dy) . 2P _
ax - P [}'](E}Y{') + 3% Y (8)

The derivative of equation (3) with respect to t can be written

2

d dy dy d /dy dy
—{—}+2Cc— —[|—]+ X (cos y) — = wF cos wt €]

dt2 dt dt dt \dt dt

It is often useful to think of y as a function of parameters in addition to
the independent variables and the operator as P(y(A,x),x,A). Then

2. pv[y](g§) +B=0 (10)

where the dot notation denotes partial differentiation with respect to a
parameter while holding both the independent and dependent variables fixed.
If y is considered as a function of t and A 1is equation (3),

d2 oy dy d /9y oy
— |—)]+2C— —|—])+Acosy—+siny=0 (11)

dt2 oA dt dt \9A oA

Some versions of Newton's method make use of equation (10) in solving for
particular solutions of equations (2a).

Different Versions of Newton's Method

In this paper, the iterative procedure defined by equations (2) is
called Newton's method. Bellman (refs. 4 and 5) gave the procedure the name
quasilinearization. McGill and Kenneth (ref. 6) use the terminology
generalized Newton-Raphson operator for the Frechet derivative of nonlinear
differential operators. The three different names are synonymous for the
general iterative method.

When the linear variational equations, equations (2a), are solved by a
specific algorithm, different writers have coined different names for
specialized versions of Newton's method. Perrone and Kao (refs. 7 and 8)
transform equations (2) to finite difference equations and solve the resulting
linear algebraic equations by relaxation. This algorithm is called nonlinear
relaxation by Perrone and Kao.

N



Other versions of Newton's method are connected with solutioms of the
linear variational equations depending on a parameter. In.mechanics, it is
usual to compute a set of solutions for the nonlinear problems for a given
set of loads or other parameters. It soon becomes apparent to a user of
Newton's method that a solution for one load or parameter is a good zeroth
approximation for a solution for a nearby parameter (ref. 9). If P(u,)) =0,
then u 1s a good zeroth approximation for the solution for P(y,A + A\) = 0.
The first iteration of Newton's method, m = 1 in equations (2), is then

2
P'[ul(6y,) = -P(u,A + AA) = ~[B(w)ar + l’-(%—f—AM— +...] (12)

If the nonlinear operator is linear in the parameter so that quadratic and
higher order terms in AX do not appear, a particular solution of equation (12)
follows directly from equation (10). For this case,

_ ou
6yl = EX-AK (13)
ou
y; = u +-§X AN (14)

If Newton's method is terminated after one iteration, m = 1, equation (14)
becomes the zeroth approximation for the next increment on A. Na and

Turski (ref. 10) call this version of Newton's method a solution by parameter
differentiation. When the parameter A 1is a load parameter and the iteration
in equations (2) is continued for the iteration counter m > 1, Newton's
method is also known as the incremental method. Stricklin and Haisler

(ref. 11) review various versions of this approach when the linear variational
equations, equations (2a), are solved by the finite element method.

The idea of continuing known solutions of nonlinear problems into

nearby neighborhoods gives rise to higher order forms of Newton's method.

These forms retain higher order derivatives in the Taylor series about a

known solution. These higher order methods stem from Taylor series expansions
in the independent variable for initial value problems. Davis (ref. 12)
designated this method as a solution by analytic continuation because the
solutions are capable of extension around singular points in the complex
domain. Weinitschke (ref. 13) applied a similar approach to solve axisymmetric
shallow shell equations for particular solutions starting at one boundary. He
used the Newton-Raphson method to satisfy boundary conditions at a second

boundary.

Stricklin, et al., (refs. 14 and 15) and Noor and Peters (ref. 16)
combine the idea of analytic continuation with parameter differemntiation
by computing higher partial derivatives with respect to a parameter.
Stricklin and Haisler (ref. 11) refer to the general scheme as a self-correcting
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incremental approach to nonlinear problems. Noor does not substitute the
high partial derivatives in a Taylor series in AA, but uses them as basis
vectors in a Rayleigh-Ritz solution of the original nonlinear problem.

The modified Newton's method uses the same Frechet derivative for each
iteration. Instead of equations (2), the iterative sequence is

P'ly I1Gy) = -PGy__;) (15a)

+ Sy m=1,2,3... (15b)

Convergence

The advantage of having the same linear operator for each iteration
step in the modified Newton's method is offset by slower convergence to the
solution of the nonlinear problem. Parameter differentiation exhibits
slow convergence near limit points where du/dA is infinite.

Kantorovich (ref. 2) proves sufficient conditions for the convergence
of Newton's method. The sufficient conditions are restrictive, but, when they
apply, the nonlinear problem has a unique solution near the zeroth
approximation.

In practical applications of Newton's method, there is not enough
information to apply Kantorovich's convergence criterion. However, it is a
useful guide because nonlinear problems with unique solutions for a fixed
range of parameters will exhibit rapid convergence of Newton's method. When
the solutions are not unique, Newton's method can still converge. The lack
of uniqueness in the nonlinear solutions is reflected by lack of uniqueness in
8y, at some iteration step m. A decision on which solution branch to pursue
must be made before continuing the iteration.

The theory of the linear differential operators is a guide for making
these decisions. Application of the theory of linear ordinary differential
equations in finding multiple solutions of nonlinear problems is the topic of
the next section.

VARTATION OF PARAMETERS

One method of analysis is examined here in detail to show how linearization
can influence discretization. The method is variation of parameters which
is used for finding particular solutions for systems of linear ordinary _
differential equations. The theory for linear ordinary differential equations
is well understood and is a reliable guide for computing their solutions. The
variational equations of Newton's method are linear ordinary differential
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equations when the nonlinear problem is governed by a system of nonlinear
ordinary differential equations.

Assume that the nonlinear problem can be written as
P =L+ Frx) =0 a<x<h (16)
plus two-point boundary conditions,
U(y (a), y(d),A) =0 17)

The dependent variable y 1is a vector function with n component
functions of the independent variable x. There are n boundary conditions

which may be nonlinear.

The sequence for the mth iteration step, equations (2), is

dem
' = -
+ F [ym_lsxa}‘](sym = P(Ym_l,x,l) (188.)

dx

Sy (a)
Y1 {7 ) = W (18b)

Sy (P)
Yoy = Yog + Gym m=1,2,3,... (18c)

The Frechet derivative F'[ym_l,x,X] for this case is the Jacobian
of the function F(yp-15%,A). The shorthand notation

J 1= Fly _;.xA] (19)

will be used in subsequent equations.

The solution of the linear variational equations, equation (18a), can
be written in matrix notation as (see ref. 17, for example)

Sy = o C + Gym (20)

m p
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The matrix ¢, contains n columns, each column contains a linearly
independent solution ¢(x) of the homogeneous differential equations.

d¢ -
a1 $=0 (21)

The vector ¢, is constant. The vector function &y, is the particular
solution of the differential equation system. The method of variation of
parameters is a method of deriving the particular solution using the solutions
of the homogeneous equations ®,. The method introduces the change in
variables

8y =90 z (22)

equation (21a)

where z is a vector function. 1In the new variables <z,

is

d@m dzm
— z + @m-——— +J %z = —P(ym_l,x,l) (23)

dx dx n-l'mm

The terms multiplying 2z, vanish identically from equation (23) since each
column @m satisfies the homogeneous equations, equation (21). The
equations

dzm
(I)m - = -P(Ym_l,X,A) (24)
dx

are solved by inverting the matrix @m and integrating each equation.

|
2, = C —J e 1) 2y, 1,00 4 (25)
a

Substituting equation (25) back into equation (22) completes the
solution for dJyp. Comparing like terms with equation (20) shows that the
particular solution is

X
8Ypp = ~8, (0 j $L@) Ply__;,0.0) dz 269
a
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Whenever the integrals in equation (26) exist, the particular solution
always exists and depends on both the residual error and the solutions of the

homogeneous equations, equation (21).
Boundary Conditions and Compatability
Determining the values of the constants of integration C, completes
the mth iteration step. The constants depend on the linearized boundary

conditions, equation (18b). Substitution of equation (25) into equation (18b)
yvields a set of linear algebraic equations

B C =D 27)

p—q) (a) —
R (262)
(b)

Assume that the boundary conditions are posed so that Bn is an n X n square
matrix. Then three possible conditions exist for the solution of equations (27).
Let the rank of matrix B, be (n - k) where the number k is the index of
compatibility (Ince, ref. 18) Let the rank of the matrix obtained by
augmenting Bm with the column vector D be (n - p). The three conditions
are the follow1ng

1. k¥ =0 There is a unique solution of equations (27) for the constants
of integration ;. The mth iteration step is complete with a unique
correction vector &y, given by equation (20).

2. k < p The algebraic equations are incompatible (also referred to
as inconsistent) and no solution exists for the constants of integration,

Cc .
~m

3. k = p There are k arbitrary constants in the solutions of
equations (27)

~1ngIJn=o §=1,2, .. k<n (29)
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The solution of the linear variational equations, equation (18), contains k
arbitrary constants A,.

J
k
Gym = | E Aijj + Gyml (30)
j=1
The V_. are linear combinations of the solutions of the homogeneous
equations,
= j 1 =
ij @m gm 3j 1,2, .. k<n (31)

The particular solution 6ym1 is completely determined and satisfies the
boundary conditions,

ayml = <I)mgm + 6ymp ' (32)

The constants of integration C, in equations (32) are solutions of a

reduced (n ~ k) square matrix.

The theory for the compatibility of the boundary conditions is related
to Kantorovich's convergence criteria for Newton's method. The first condition
k = 0 is part of the sufficient conditions for convergence of Newton's
method to a unique solution. Problems with unique solutions converge rapidly
using Newton's method and the numerical solution strategy for the zeroth
approximation and incrementing parameters is not crucial for convergence.

The second condition k < p indicates a break in the iteration
sequence. This condition is not usually met in practice. The matrix B
becomes ill-conditioned near 1limit points and approaches the condition k < p,
but does not satisfy the condition exactly. 1If the assumed solution Ym-1
is modified, the boundary conditions may be shifted to make k = 0 or
k = p. This modification follows the same lines as the procedure for the
third condition, k = p, which is considered next.

When k = p, there are k arbitrary constants of integration A: in

the correction function &y, in equation (30). If the Ay can be assigned
values, the iteration can be continued. '
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Multiple Solutions

If k counstants of integration A: are arbitrary after m diteration
steps, the nonlinear problem can have multiple solutions for a fixed set of
input parameters. The procedure for determining the different solutions
depends on the details of the problem, but the analysis contains general
guidelines for assigning values for the Aj. The discussion here considers
the (m+l)th iteration for the case JOyp] = 0 in equation (30). In other
words, it is assumed that convergence has been obtained for a solution yp_q
of the nonlinear problem for a certain value of A = 1 when the Aj are
zero.

The next step is to investigate continuing the iteration with at least
one of the Aj small but finite. The residual error for the (m+l)th
iteration using &y, from equation (30) is

Sy 2 Sy

3
I 1" _m 119 3 _m
P(YmsXJ\) =F [Ym_l:x,ﬂ (2! ) + F [Ym_l,X,l] (3! ) + .. (33)

The residual is nonlinear in the constants A;. The lowest order terms are
quadratic in the constants unless F"[ym,x,Xj containing second derivatives
in the Taylor series vanishes. The linear variational equation for the
(m+1l) iteration becomes

ddy

41 T
dm ¥ Jm 6ym+1 N —P(ym,x,A) 34)
X

The Jacobian J; is shifted from Jp_ 7 and is also a function of the
A:. The difference in the two Jacobians appears if the transformation from
tﬂe mth iteration is applied to the (mt+l)th step

6ym+l = szm+l (35)

Then, equation (34) is transformed to

dz
o+l -1 P | -
-t Qm [Jm - Jm—l]q)mzm+l - <I)m P(ym,X,A) (36)

dx
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The difference in the Jacobians is a matrix

[Jm—J

oe1d = F'ly 4 + 8y .x,0] - F'ly__;,x,2]

F"[ym_l,x,k](ﬁym) + ... 37

The leading terms in an expansion for each coefficient of the matrix is
linear in the A; when the residual error expansion starts with quadratic
terms. The leading exponent is always one less than the leading exponent in
the residual.

In theory, equation (36) can be solved by variation of parameters. A
new set of constants of integration Cpyj appears in the solution to be
determined by a new set of boundary conditions.

Bt Sor1 T P (38)

The formal solutions contain the undefined A; as parameters. In numerical
solutions, the explicit dependence of the solution on the A. is not known.
A procedure that can be implemented for numerical solutions 1s to partition
the problem of determining the constants of integration Cm+1> equation (38).

The partitioning identifies k constants of integration as corrections

SA: on the A3 and partitions equation (38) into a k by k problem to fix

the A: and A:. An iterative procedure is to use trial values for the
Aj ana solve for the G8A:. The k by k problem is solved when the 6Aj

vanish for finite real Aj?

The G6A; appear as the first k variables of Cp4] when the Vp
. = . J
from equation (30) are arranged in the first k columns of ¢, in
equation (35). Once the A:; and G&A; are determined, the remaining (n - k)
equations in equation (38) are a linear set of algebraic equations in the
remaining (n - k) constants in 9m+l'

To avoid converging back to the solution Ym-1 with the A. = 0,
a shift in A is introduced to provide for nonzero, real solutions for
the constants Aj.

The shift in A dis introduced in the right side of equation (34)
which is replaced by

P(y ,%x,A) = P(y_,%x,0) + P(y_,x, (A - R) + ... (39)
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for k=1 will be examined further.

and the right side of equation (36) is
ol L,z = —0 ey =M - 8By L,k D - 1) + (40)
m Ym, ’ m Ym, s m ym, > cee

Introducing A as a free parameter allows iterating on the reduced k by k
problem by assigning a value to one Aj; and using A as part of the
minimization on dJyp4; by making 6Aj zero or small compared to Ay.

Which A. to replace as a variable by A depends on the modal coupling
in the given problem. When k = 1, there is only one Aj = Ay so the
choice is not arbitrary.

The case k =1 is a common case for problems with limit points or
isolated bifurcation points. Therefore, the general iterative procedure

Isolated Bifurcation Point

For an isolated bifurcation point, yp-3; 1is identified as a solution
of the nonlinear problem at A = A and k =p = 1. In applications of
Newton's method, the solution yp-j can be generated by simply incrementing
the parameter A in numerical solutions to approach the bifurcation point
and continue past it. As A 1is varied in increments in any numerical
solution using Newton's method, the boundary condition matrix B approaches
B in equation (29). The rows of B can be rearranged by elementary
operations so that the coefficients of at least one row, say row k = 1,
are small as A approaches A. TFor a bifurcation point, the element k of

the D vector is identically zero for A near A.

For a limit point, the kth component of D may be small but the small
divisors of B prevent convergence at A = A without analysis similar to
the bifurcation analysis described here.

When yp-1 1is a solution at the bifurcation point A = A, setting
A; = 0 so that y, = yp,-1 and varying A continues the solution so that

Sy _
> —mL o 7y (41)

Sy
-+
m+1 ax
as noted in the discussion on parameter differentiation and equation (13).
Having one solution near ), the problem is to investigate the second
solution of the nonlinear problem whose existence is identified by Vjy,
the nontrivial solution of the linear variational equations.

A simple procedure for Newton's method is to assign a value to Aj so
that yp = yp-3 + A1V] is a known function. Solve the first scalar equation
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of the set of equations (36) where the equations are arranged so that the first
element of 2zpyq multiplies the vector function V3. The right side of

the single differential equation is the first element of equation (40). The
constant of integration G8A; for this equation can be set to zero if

(A = X) is selected to make the first component of D L in the boundary
conditions, equation (38), vanish.

For numerical solutions, the analysis required by the expansion in
equation (40) can be circumvented by recognizing that while the solution for
S8A; 1is nonlinear in Aj, it is approximately linear in (A - ). The
constant of integration for J§A; can be minimized by interpolating linearly
between solutions for residuals P (yp,X, 2+ Akm+1) and P(yp,x,A) where
Mpy1 1is small but arbitrary. This interpolation on A to determine
A = Apyy for fixed Ay 1is shown schematically in figure 1. The figure
represents the surface &8A; = 8Aj(Aj,)A). It is desired to compute inter-
sections of the surface and the Aj - A plane. The surface is tangent to
the plame along the ) axis, but solutions with A, = 0 are already assumed
known by equation (41). Curves on the surface for constant A are nonlinear
in A; while curves for constant Aj are assumed to be nearly linear.
Therefore, one can fix (A1), 0 and approximate +1 = Ap + AA by inter-
polating on A between the calculated points 6A1E(Al)m,Km] and
6A1[(Al)m,A] to approximate SAl[(Al)m,Am+1] = 0.

Once A1 is determined and A = A ,, the remaining (n - 1) equations
of equation (38) can be solved to complete the (m+l)th iteration. When Ay
is small, the terms in [Jm - Jm-l] can be neglected in these equations or
handled by successive approximations.

Since [Jm - Jm_1] is of lower degree than the residual, successive

approximations should converge rapidly for the remaining (n - 1) equations,
(ref. 18).

If the linearized boundary conditions are no longer singular because of
a finite Ay, the usual Newton method iteration can be continued with A
prescribed as an independent parameter. If the boundary conditions are
nearly singular, another interpolation on A may be required.

Once the analysis shows how to start the Newton's method iteration with
a finite value of A, different implicit or explicit numerical integration
methods can be used to find A as a function of Al'

NUMERICAL SOLUTIONS

In applying the results of the theory, numerical solutions do not need to
follow the analysis in every detail. For example, "shooting" methods
(ref. 19) are used for computing particular solutions rather than variation
of parameters. When the problem is partitioned into a reduced k by k
problem, the complete transformation indicated by equation (35) need not be
carried out. The transformation
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6ym+l =wz . (42)

is sufficient where w 1is not singular and contains the k eigenfunctions
Vps as its first k columns.

The interpolation on A for fixed A; can be carried over to nonlinear
partial differential equations which are solved by matrix methods. A finite-
element code for general shell problems was used to generate the end-shortening
u as a function of center deflection w for an isotropic square plate in
compression. The amplitude w = A; was held constant at 1.7h where h is
the thickness while u was varied in the role of A. The interpolation on
A 1is indicated by the dashed lines in figure 2. One iteration cycle of
Newton's method (m = 1) with input w, = 1.7h and u = 1.0 ucy (point A
in the figure) shifted the output to wy = wy + 6wy = 1.32h (point B).

Another separate iteration with input at point C shifted the output to

wi = 1.9%h and u = 4.47 ucr (point D). Interpolating on u gives

Swy =0 at u = 2.97 ucy (point E). The latter value of u was sufficiently
accurate to obtain convergence of Newton's method at point F on the solid
curve. The solid curve was generated by varying u in increments starting
at point F using the standard Newton iteration of the computer program.
Varying the end-shortening with w = 0 over all the plate would merely
change the in~plane solution which does not couple with the transverse
equilibrium equation for an initially flat plate. Starting the iteration on
the computer solution with an assigned amplitude of the lowest buckling mode
shape is sufficient to achieve convergence on the postbuckled curve.

When matrix methods are used for the numerical solution of static
boundary-value problems, a similarity transformation on the tangent stiffness
matrix is analogous to the change of variables in variations of parameters.
When the equations are partitioned using only k modes, equations (42),
the analog is an equivalence transformation in matrix theory.

The numerical analogies will not be developed in this paper, but the
general development should parallel the discussion here. Eigenvectors of
the numerical analog to the Prechet derivative replace eigenfunctions. A
k by k reduced problem has been suggested by Almroth, et al., (ref. 20).
Solving the remaining (n - k) equation by successive approximations as
suggested here preserves linear independence.

CONCLUDING REMARKS

Linearization before discretization in Newton's method allows classical
linear theory to be applied to nonlinear mechanics problems. The linear
theory provides useful qualitative information that can affect convergence
of the iterative solution.

The example in the paper, variation of parameters from the theory of
linear ordinary equations, shows clearly the interdependence of the residual
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error and the properties of the linearized operator in Newton's method.
Variation of parameters suggests a change of dependent variables for computing
particular solutions. The change in variables is also a means of partitioning
the problem to speed convergence of Newton's method when the nonlinear

problem has multiple solutions for a given set of parameters.

The change of variables can be extended to numerical solutions using
matrix methods by an equivalence transformation. The new variables arise
naturally in the problem which is an advantage for writing computer codes
for matrix solutions. No prior quantitative information on choice of
variables is required by the program user.
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SUMMARY

Transient, nonlinear soil-structure interaction (SSI) simulations
of an Electric Power Research Institute (EPRI), SIMQUAKE experiment were
performed using the large strain, time domain STEALTH 2D code and a cyclic,
kinematically hardening cap soil model. Results from the STEALTH simula-
tions have been compared to identical simulations performed with the TRANAL
code.

INTRODUCTION

Transient, nonlinear soil-structure interaction (SSI) simulations
of an Electric Power Research Institute (EPRI), SIMQUAKE experiment (ref. 1)
were performed using the large strain, time domain STEALTH 2D code (ref. 2)
and a cyclic, kinematically hardening cap soil model (ref. 3). Results from
the STEALTH simulations have been compared to identical simulations per-
formed with the TRANAL code (ref. 4) and will be compared to field data at a
later time.

The desirability of using a large strain, nonlinear time domain
approach to do certain types of SSI simulations has been established by
several investigators. 1In particular, two studies prior to this one and
also sponsored by EPRI have explored (1) the limitations of the equivalent
linear method (EIM) to calculate large strain nonlinear response (ref. 5)
and (2) the effect of a soil model to allow for debonding and rebonding
around a rocking structure (ref. 6).
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A primary emphasis in the current study was the application to SSI
simulations of a mesh-interaction (slideline) algorithm developed for impact
(ref. 7) and penetration events (ref. 8). The interaction algorithm is based
on explicit numerical equations developed by Wilkins (ref. 9). The interac-
tion algorithm formulation in STEALTH 2D is "strongly coupled" in that in-
terface motion equations are centered in both time and space.

To simulate SIMQUAKE using the interaction algorithm, a modified
soil island approach used by previous studies (ref. 6) was adopted. The
input excitationm histories around the fictitious soil island boundary were
obtained by linearly interpolating the measured time-dependent ground motion
data in the free field. A free-field calculation using coarse meshes in a
large domain to obtain soil island input histories was therefore not re-
quired. Furthermore, the available measured data around the structure pro-
vided a validation check of the STEALTH 2D code and the interaction algo-

rithm.

Several types of analyses were performed. One type compared calcu-~
lations in which the structure was omitted and the effects of the cap versus
a simple elastic model were considered. Both velocity and stress responses
within the domain of the soil island were monitored. These cases provided
insight into the transient wave characteristics between linear and nonlinear
soil models. These calculations also provided a preliminary test of the
mesh-interaction logic in which interface nodes were constrained to act as
interior nodes. Another type of analysis included both the structure and
the soil (cap and elastic) but did not allow debonding and rebonding.

Again, velocity and stress responses surrounding the structure were compared
to each other and to the previous calculations without the structure. Basic
characteristics of the soil-structure interaction are revealed through such
comparisons. The last class of calculations included the comparison of two
debonding~rebonding logics ~- one based on the mesh-interaction algorithm
and the other on a constitutive tension-cutoff model.

Next are described the SIMQUAKE field tests, the soil island metho-
dology, the STEALTH 2D code, and the slideline logic used for various as-
pects of the problem. Finally, the results of various calculations are
presented.

DESCRIPTION OF SIMQUAKE

The purpose of the SIMQUAKE field-test series was to impose strong
earthquake-like ground motions on structural models in order to evaluate (1)
soil response characteristics (through laboratory and field studies) and (2)
soil-structure interaction phenomenology. For the former, endochronic (ref.
10) and cap constitutive models were developed, while in the latter
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category, different numerical models were used to perform pretest and post-~
test analyses.

The simulated earthquake test conditions were achieved by detonating
two planar arrays of explosives in such a way as to yield several cycles of
planar, p— and s-wave motion passing by the structures. The amplitudes and
frequencies of these motions were chosen to approximate a given undamped
spectrum. A plan view of the two plamar arrays of explosives and five of
the structural models used in the second SIMQUAKE test series is shown in
figure la.

During the test, measurements were taken on and near the structure
and in the free field. Figure 1b shows schematically the locations of the
various free-field bore holes in which instruments were located. It was
intended that these free field measurements would be used as "soil-island"
input boundary conditions for the various calculations. The measurements
taken on or near the structure were intended to be used to validate the
codes and analytic methodology.

The structural models were subjected to planar test conditioms.
Figure 2 is a schematic of a typical axisymmetric structure. The nominal
dimensions of the various structural models are listed below.

Structure Diamet er Height
Type (ft) (ft)
1. 15 22-1/2
2. 10 15
30 5 7-1/2

One each of the type 1, 2 and 3 structural models were imbedded to
1/4 of their height in the soil using native backfill. Two type 2 struc-
tures were included —-- each at a different range location. A second type 3
structure was constructed to test a seismic isolation design. A third type
3 model was free standing and filled with water to test fluid-structure
interaction. The different conditions chosen intended to shed light on
questions of response, scaling, backfill and depth of burial.

SOIL ISLAND METHODOLOGY
. The soil island approach is a method for coupling free~field ground
motions to analyses of structure-medium interaction. It allows the analyst

the freedom to develop free-field ground motion in any manner which is con-
sistent with equations of dynamic equilibrium. This includes either field
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measurements or computations or both. The soil island approach has been
successfully applied to a range of problems involving wave effects on pro-
tective structurese.

In the first step of the soil island approach, a fictitious boundary
is designated in the free field which surrounds the location of a struc-
ture; the free-field ground motions along this boundary are stored for
later use. In the second step, this volume of soil referred to as the soil
island is analyzed in detail using the stored free-field ground motions as
boundary conditions. This reduces the structure-medium interaction model

to manageable size.

The soil island concept was initially developed to analyze the
response of a surface—-flush military structure in a layered site subjected
to outrunning ground shock from traveling airblast loading, to local air-
blast induced ground motion, and to the airblast itself. The outrunning
response contained predominantly low frequencies because the high frequency
component was filtered out by propagation over long distances through hys-—
teretic soil. To apply the soil island method to this case, the outrunning
motion was calculated with a coarse grid (adequate up to about 1 Hz) which
extended about 3 miles in length and about 1 mile in depth. A fictitious
soil island was defined and motions on its boundary were stored. These
were subsequently applied to the boundaries of a soil island, which includ-
ed the structure. The soil island consisted of sufficiently small elements
to insure that the high frequency response (up to about 30 Hz), produced by
the airblast and the local airblast induced ground motion, was properly re-
presented.

A modification of the soil island approach is adopted when simulat-
ing a physical experiment such as the SIMQUAKE series of field tests. In
this case the free—-field calculation is eliminated and free-field velocity
and acceleration gages are installed on the boundaries of the fictitious
soil island. After processing, the time-phased records are used first as
input to a calculation of the response of a soil island without structure.
The motions in the interior of this soil island can be compared with free-
field measurements at corresponding locations. The degree of favorable
comparison gives valuable insight into the adequacy of the site model.

Then the structural model is inserted into the soil island and the pro-
cedure is repeated to obtain soil-structure response. Due to practical
limitations on the number of channels of instrumentation, there are never
input time history records at all mesh points on the soil island boundaries
as is required for the soil island analysis. Studies involving input from
coarse mesh free-field calculations into fine mesh soil island models indi-
cate that satisfactory input motion at a fine mesh node can be obtained by
linear spatial interpolation between the two adjacent coarse mesh nodes.
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Comparison between motions in the interior of the soil island and at
corresponding points of the parent free-field calculation, illustrates the
success of the method.

Regardless of the methods used to define free-field ground motion,
the second step in the soil island approach is to designate fictitious soil
islands surrounding possible structures of interest. The free-field
velocity—-time histories at all points on the boundary of the island are
stored for future use. The boundaries of this island are chosen suffi-
ciently far from the eventual position of the structure that, when it is
included, it causes only a slight perturbation of the boundary motion. Of
course the boundaries must be chosen close enough to the structure to ensure
that the eventual structure-medium interaction problem is of manageable size.

The final step is to apply the free-field motions to the boundaries
of a soil island including the model of the structure. Since the soil
model is the same in the island and in the free field, the time phasing of
the applied motion would exactly satisfy the wave equations governing mo-
tion within the island if it were not for the structure, which disturbs the
free-field motions in two ways. First, there is scattering of waves which
is caused by the impedance mismatch between the soil and the structure.
Although the authors are unaware of prior work which would shed light on
the wave lengths associated with the scattered waves, it is speculated that
they are determined by the input ground motion and possibly by the charac-
teristic length and embedment depth of the structure. The second type of
disturbance arises from waves induced in the soil by motion of the struc-
ture, such as rocking and relative tramslation, which is commonly recog-
nized as structure-medium interaction. The wave lengths associated with
these disturbances presumably are governed by the periods of the principal
modes of structure—medium interaction. In some approaches, nonreflecting
boundaries are used to absorb both types of waves so that they are not
reflected back to the structure and become confused with the primary
structure-medium interaction. One benefit of an energy absorbing boundary
is that the boundaries may be moved close to the structure with resulting
savings in computer time.

In the soil island approach, the island is presumed to be suffi-
ciently large that reflections between the boundaries and the structure are
small. Reliance is placed on dispersion, geometrical attenuation and ab-
sorption of energy by material damping to reduce the error to an acceptable
level.

A.simple site model involving uniform properties or horizontal
layering and uniform horizontal bedrock motion was adopted for this study.
Though this is not necessarily a complete picture of earthquake ground
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motion, it is nevertheless one which is familiar to many workers in the
area of finite element simulation of structure-medium interaction. It is
also simple, which helps in identifying structure-medium interaction ef-

fects.

STEALTH 2D AND SLIDELINES

STEALTH 2D is a two-dimensional, large—strain, explicit finite-
difference Lagrange computer code. The most important feature of STEALTH
2D that was tested in the SIMQUAKE simulations was the multigrid slideline
capability. Slideline is an historical term which identifies the logic
necessary to couple two object meshes together to simulate a penetration or
impact event in which relative sliding, debonding and redebonding occurs.
Numerically this means that each of the interacting objects gets its inter-
face boundary conditions from the other object. When relative motion
between the objects occurs, interface boundary node locations on one object
do not necessarily coincide with the locations of interface boundary nodes
on the other object. In scenarios of relative sliding, the locations of
interface boundary nodes are constantly changing. In cases in which de-
bonding and rebonding occur, the interface boundary nodes are not only
changing their position along their relative interface but are often spaced
by regions of void.

Slidelines are also used to effect a discontinuous change in nodali-
zation within a particular material. This capability is called "tied slid-
ing" because nodal points are tied to the slideline, that is, no relative
sliding or debonding is allowed after the original placing of the interface
nodes. The nodes act as if they were interior nodes. Figure 3 shows an
example of tied sliding nodes.

For the SIMQUAKE soil island geometry, there are a number of ways in
which STEALTH 2D can be used to model the event. Each has distinct physical
and economic advantages and disadvantages. The simplest, most rudimentary
use of STEALTH 2D does not require slidelines. In this case, a rectangular
domain is chosen which is bounded by the soil island boundaries on the bot-
tom and two sides and a horizontal free surface boundary at the elevation of
the top of the structure. This is shown in figure 4a. One grid is used
which includes explicit air (void) regions on either side of the structure
and above the ground surface. This model has one major economic disadvan-
tage —- that of having to compute air nodes, which could just as easily be
handled by using an appropriate boundary condition and by using two grids
coupled through one tied slideline to define the structure. Figure 4b shows
this arrangement. Neither the mesh in figure 4a nor the one in figure 4b
allows for debonding and rebonding of the structure. These effects can be
handled through special logic in the constitutive model for the soil zones
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next to the structure. These zones can be made very small (by STEALTH mesh),
and the tension-cutoff and recompression constitutive parameters can be
chosen to give the effect of gap regions. One set of calculations was per-
formed using the STEALTH mesh. A disadvantage to this approach can occur if
the "gap" zones are so small that they control the time step. In SIMQUAKE,
this was not the case —- the zones in the very stiff structure controlled the
time step.

Another approach for modeling debonding and rebonding involves mul-
tiple grids connected by both tied and free slidelines. Several variations
of this approach are shown in figures 5a and 5b. The variation shown in
figure 5a was used in several SIMQUAKE simulations. Slideline #1 is tied
and is used to effect a change in zoning. Slideline #2 is located at a
depth coincident with the bottom of the structure. The nodalization above
and below slideline #2 is identical but debonding/rebonding is allowed to
occur at the base of the structure. Everywhere else the slideline is tied.
A third tied slideline exists at the ground surface connecting the bottom
1/4 of the structure to the top 3/4. A potential flaw of the approach shown
in figure 5a is that no kinematic debonding is allowed at the sides of the
structure. If it is necessary to achieve debonding at these locations, then
zone gap models would again be necessary.

To have kinematic debonding all around the structure would require
the mesh shown in figure 5b. Here, slideline #l is the same as in figure
5a, but slideline #2 is placed at the surface of the ground and around the
structure as shown. This arrangement has two advantages over the previous
one -- it will require slightly less computer time because there are fewer
total nodes and there is no need for gap zones. The disadvantages are that
the zones are not rectangles and are less accurate than their rectangular
equivalents.

Two other STEALTH 2D options which can significantly reduce cost and
possibly increase accuracy are available. The primary assumption required
is that the structure can be treated as a rigid body. In all the meshes
shown so far, the time step is controlled by zones in the structure. The
sound speed in the structure is about ten times that of the soil, so that
for equivalently sized zones, the global (problem) time step is 1/10th of
what would be required for the soil were it to control the global time step.
Assuming that the structure is at least elastic and almost rigid allows for
two options to be considered -- (1) subcycling the nodalized structure at
its smaller time step or (2) using a rigid body model for the structure.

One approach using the rigid body assumption for the structure is
shown in figure 6. Figure 6 is a variation of figure 5b, in which the flex-
ible structure is replaced by a rigid body model.
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DESCRIPTION OF CALCULATIONS

Several SIMQUAKE calculations have been performed using three dif-
ferent codes -- TRANAL, FLUSH (ref. 11) and STEALTH 2D. The results
presented in this paper are primarily from the STEALTH 2D calculations.
However, the STEALTH results have been compared to results from TRANAL, so
where necessary, TRANAL results are also presented. TRANAL and STEALTH are
both explicit time domain codes. Though TRANAL is a finite-element code and
STEALTH is a finite-difference code, the only major difference is that
TRANAL utilizes a small strain assumption while STEALTH does not.

Table 1 summarizes the calculations presented in this paper. These
include several variations of the same boundary conditions and geometry in
order to determine among other things, the effect of (1) material properties
and (2) debonding-rebonding logic. Two material models were used -~ elastic
and kinematic cap. Two debonding-rebonding logics were used —- one involved
a tension-cutoff parameter in the cap material model while the other used a
distinct kinematic surface.

In order to verify the STEALTH 2D tied sliding logic, three free
field calculations were made. These calculations used the same soil island
volume but slightly different boundary conditions from those used in subse-
quent SSI calculations, in which the structure was included in the mesh.
Figure 7a shows the mesh used both by TRANAL and by STEALTH. Figure 7a has
no slidelines. Figure 7b is the STEALTH mesh which makes use. of tied sliding
in order to get a greater number of zones in the region where the structure
will be placed. Notice that in both cases the soil island boundary nodes
are identical.

Results from these cases for the elastic material model are shown in
figures 8a and 8b. These are velocity histories at the A and B locations,
respectively, noted in figures 7.

The next set of calculations that were performed included the struc-
ture. The TRANAL and STEALTH meshes are shown in figures 9a and 9b. These
two meshes use gapping logics in the thin zones bordering the structure.

Two other STEALTH meshes were shown in figures 5a and 5b. Figure 5a
displayed a grid which uses a horizontal slideline at the base of the struc-
ture. 1In figure 5b, a slideline separating the entire structure from the
s0il was used. Characteristic results from these cases are shown in figure
10. Due to page limitations for this paper, other comparisons are not
shown. The results shown are typical. Detailed results will be available
in the near future as an EPRI publication.
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CONCLUSIONS AND SUMMARY

The results shown indicate relatively good agreement between all
the STEALTH and TRANAL calculations. The differences that are seen can
probably be attributed to (1) large (STEALTH) vs small (TRANAL) strain for-
mulation and/or (2) grid discretization differences.
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Type

Free Field
Free Field
Free Field
SS1I

SS1

SSI

T!.BLE l .

Code
TRANAL
STEALTH 2D
STEALTH 2D
TRANAL
STEALTH 2D

STEALTH 2D

- SIMMARY OF CALCULATIONS PRESENTED

Comments

elastic

elastic

elastic, with tied slidelines

kinematic ecyclic cap, gapping
elements (Figure 9a)

kinematic cyclic cap, gapping
zones (Figure 9b)

kinematic cyclic cap, rigid body
debonding/rebonding (Figure 6)
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Figure 2.- Typical scaled structure.

Figure 3.- Two-dimensional multi-grid example.
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STRUCTURE
\ air-structure interface

soil~-structure interface

SOIL

(a) Schematic using no slidelines and one grid.
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grid+ 1

tied slideline.

soil-structure interface

SOIL

(b) Schematic using one slideline and two grids.

Figure 4.~ Schematics of SIMQUAKE mesh.
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Figure 5.- Debonding/rebonding of a flexible structure.
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Figure 6.- Debonding/rebonding all around rigid structure.

61



62

// // r/,,free surface

(a) TRANAL and STEALTH free field, soil island mesh
using no slidelines.

A 8 free surface
/ -

«—tied slidelines

(b) STEALTH free field, soil island mesh using two tied slidelines.

Figure 7.— TRANAL and STEALTH free fields.




TRANAL STEALTH

45.0
30.0 -
(3]
o
v
=
E
15.0
w
o
=
[2}
£
-l
0.0 ~
>
k)
-l
J
o
—
L
-15.0 >
—
@<
el
=]
=]
N
-~
-30.0 5
2
1 1 =45.0 time (sec)
0.0 1.0 2.0 3.0

time (sec)

(a) Horizontal velocity histories for 3.0 seconds from TRANAL
and STEALTH output at location A (see Fig. 7).

STEALTH STEALTH
coarse mesh fine mesh

15.0 0} 15.0 -3

a ]

10.0 - 3 10.0 ]

[=9 —

" -

2 —

5.0 g 5.0 -

Z -

0.0 > 0.0

] —

= =

g =

-5.0 ] -5.0—3

> -

— -

-10.0 3 -10.0,3
i
-«

B =

-15.0 Ky 15.0_7

TTTT TTTITTTTITITTT RA ‘l‘!—[‘rl_l'"l‘l—l—l—l—l_l—rl
ol.o TI ol.s I 1!0 0.0 ”—]—' 0.5 1.0

time (sec) time (sec)

(b) Vertical velocity histories for 1.0 second from two STEALTH
meshes at location B (see Fig. 7).

Figure 8.- Comparison of velocity histories for elastic free field
simulations.

63



CONCRETE

BACKFILL

sSoiL!

S0 2

DEPTH = 0 —

:,:‘;r_ Tl ][ 'L I -
il i
e ! P
il ! [
A R M T r*— ’
: RN ! .
1 SRS . ! i
lr_ ; Ty ll"] L ; ' S —
oo G Sy i
« RSB . L b
: P ,5;15;%5-‘5;u_ T T (..
NS SN S R S KRR A LAY S
L L ™ R
pEPTH =825 L. 4 i i 1 titdd [;Ii . 4 14 | |
h
NANGE =150 AANGE = 300"
(a) TRANAL mesh.
oS CONCRETE
[] sackrine
soiL 1
soIL 2
DEPTH = 0’ — e e e { — PR LAAS L YIUNMED O T ARG IR (VIR R CRA A PPREIN))
AT Ay EARATV N ST R b PV S Nid WL\ CRUAPAR TER AN DI IO LI SEI2 AL Pl
DAY XA Feres o BT o y G S s
; ] 1
TIED T — '

SLIDE LINE —

Dspm-u.s'—l'

RANGE = 150°

(b) STEALTH mesh.

|
RANGE = 300’

Figure 9.- Comparison of TRANAL and STEALTH meshes with gapping

elements, or zones, next to flexible structure.




Horizontal Velocity
(inches per second)

Horizontal Velocity

(inches per second)

Vertical Velocity

(inches per second)

'~20.890

€6.00

40.00

R

20,09

T

8.088—

~-29.08

T

60.080

40.090

28.80

-49.080r-

~€90. 08 . - + -

6€0.00

49.00}

28.98

)
’
/b\ e o a z
. K AV . £4 !
i M ‘\
-20.00)F

-40.60

T

T

-68.00 —~— - A
p.88 8.5e 1.08 1.58 2.00 2.50 2.680

Time (sec)

TRANAL
--------STEALTH
(gapping)
® ¢ » o ‘STEALTH
(kinematic)

Figure 10.- Comparison of three velocity histories on the

flexible structures.

65






COMBUSTION - STRUCTURAL INTERACTION IN
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T. Y. Chang and J. P. Chang
Department of Civil Engineering
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Department of Mechanical Engineering
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SUMMARY

The effect of interaction between combustion processes and structural
deformation of solid propellant was considered. The combustion analysis was
performed on the basis of deformed crack geometry, which was determined from
the structural analysis. On the other hand, input data for the structural
analysis, such as pressure distribution along the crack boundary and ablation
velocity of the crack, were determined from the combustion analysis. The inter-
action analysis was conducted by combining two computer codes, a combustion
analysis code and a general purpose finite element structural analysis code.

INTRODUCTION

In recent years, much attention has been focused on the investigation of
the coupling effect between combustion phenomenon and mechanical behavior of solid
propellant. The solution of problems of this type can further better understand-
ing of the transient combustion processes inside solid propellant cracks, which
may significantly affect the performance of a rocket motor. The combustion pheno-
menon inside the crack of solid propellant is strongly influenced by the crack
geometry as the material is being deformed and burned away. Generally, there are
two major reasons for alteration of the crack geometry: 1) mass loss due to
gasification of propellant surface along the crack during the combustion process,
and 2) mechanical deformation of the propellant due to pressure.

On one hand, both the burning rate and mechanical deformation are governed
by pressure acting on the crack surface. On the other hand, a change in crack
size will cause the pressure distribution to vary. The pressure distribution
will strongly influence the deformation and stress concentration at the crack

*Research sponsored by the Power Program of the Office of Naval Research Arlingtom,
Va., under Contract No. N00014-79-C-0762. The support of Dr. R. S. Miller is grate-
fully acknowledged. A part of this work was performed under a previous contract
sponsored by Dr. R. L. Derr of NWC. His support is also appreciated.
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tip, which in turn will affect the manner of the crack propagation. It is,
therefore, apparent that the pressure distribution and the change in crack geo-
metry are strongly interdependent.

In the past, combustion and structural analyses of solid propellant were
conducted independently, with the result that interaction effects were completely
ignored. As noted above, such interaction effects can be quite important, especi-
ally when the deformation is large as compared to the original crack-gap width.
The deformation response of the material is categorized as linearly viscoelastic.
It is, therefore, the intent of this paper to present a method of analysis for the
combustion-structural interaction in a linear viscoelastic medium. To this end,
three major tasks are involved: 1) combustion analysis to model the transient
combustion process, 2) viscoelastic analysis in conjunction with moving boundary,
and 3) linkage of the two analyses.

For the combustion analysis, investigations of certain aspects of combustion
processes have been made. Taylor [l] conducted experimental tests to study the
convective burning of porous propellants with closed- and open-end boundary condi-
tions. Belyaev et al. [2] showed that the burning of propellant inside a narrow
pore may lead to an excess pressure buildup. In a later study, Belyaev et al. [3]
made a series of experimental tests to determine the dependence of flame-spreading
rate on crack geometry, propellant properties, boundary conditions, and combustion
chamber pressures. Cherepanov [4] stated that as a result of the impeded gas flow
in a sufficiently narrow and long cavity, the pressure reaches such high values
that the system becomes unstable. From his work, Godai [5] indicated that there is
a threshold diameter or critical width of a uniform cavity below which flame will
not propagate into the crack. Krasnov et al. [6] investigated the rate of pene-
tration of combustion into the pores of an explosive charge. Jacobs et al. [7,8]
studied the pressure distribution in burning cracks that simulate the debonding
of solid propellant from the motor casing.

Although results of previous experiments were of interest, no sound theore-
tical model was developed. In this study, a theoretical model was established
for predicting rate of flame propagation, pressure distribution, and pressuriza-
tion rate inside the crack. Two sets of coupled partial differential equations
were obtained: one from mass, momentum, and energy conservation of the gas phase
of the propellant product in the void region adjacent to the crack surface; the
other from consideration of solid-phase heat conduction. Due to the mathematical
complexity of governing equations and boundary conditions involved, the finite
difference method was used to obtain the solution for the combustion analysis.

In the numerical solution, the boundary conditions, which vary with time, are
specified in terms of the changing crack geometry, which in turn is found from the
structural analysis. In addition, the pressure distribution along the crack sur-
face, varying as a function of time, was obtained from the analysis and was used
as input for the structural analysis.

For structural analysis, different approaches have been taken previously
in solving (analytically or numerically) several moving boundary problems in linear
viscoelasticity. Lee et al. [9] obtained a solution for the pressurization of
an annihilating viscoelastic cylinder contained by an elastic casing in which
the material was assumed to be a Kelvin model in shear and incompressible in bulk.
Arenz et al. [10] performed a similar analysis for a sphere. Corneliussen et
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al. [11,12] presented solutions for a spinning, annihilating, viscoelastic

cylinder with free outer boundary. Since the constraining case was not included
in their analyses, the stress distribution was independent of the material pro-
perties. With the assumption of a standard linear solid model, Shinozuka [13]
presented the analytical solution for a case-bonded pressurized viscoelastic
cylinder. More generalized solutions were obtained by Rogers et al. [14] for a
class of linear viscoelastic problems by using the numerical integration scheme.
Schapery [15] also developed a general method for solving moving boundary problems.
In his approach, the moving boundary condition was replaced by a fictitious non-
moving boundary subjected to a time-dependent pressure. Later, Christensen et

al. [16] obtained a series solution for the stresses of the same problem. As
noted above, most of the analytical solutions were available for viscoelastic prob-
lems of simple geometry. For complex geometry, the finite element method has
proven to be most useful.

Application of the finite element method for solving viscoelastic problems
is not new; reports of such work can be found, for instance, in references [17-20].
However, most of the previous work did not consider the effect of moving boundary,
an important feature for the structural analysis of solid propellant. Sankaran
and Jana [21] presented a technique for the solving of axisymmetric viscoelastic
solids with moving boundary. In their approach, the finite element mesh corres-
ponding to the new boundary was re-generated, while the stress-strain histories
and material properties were assumed to be carried over from those of the previous
time increment. This assumption is valid only if the time increment is very small.
An algorithm for automatically tracking ablating boundaries was given by Weeks and
Cost [22]. All previous work dealing with moving boundary viscoelastic problems
lacks both the appropriate treatment of material properties, and stress-—strain
histories for the newly generated mesh. It is the purpose of this paper to pre-
sent such a treatment.

Three major features must be included in the structural analysis for a solid
propellant: 1) proper modeling of viscoelastic behavior, 2) tracking of
ablating boundary in order to generate new finite element meshes, and 3) treat-
ment of the material responses (i.e., stress-strain histories and material pro-
perties) for the new mesh. All of these features have been incorporated into a
nonlinear finite element program called NFAP [23]. Combustion and structural
programs were combined in order to make possible an interaction analysis. Numeri-
cal results are presented to demonstrate the effect of interaction between
combustion and structural responses of the material.

COMBUSTION ANALYSIS

The theoretical model was developed to simulate the combustion phenomenon
inside a propellant crack, which is located in a transverse direction to the
main flow of the rock chamber. During the course of derivation, the following
assumptions are made:

1) All chemical reactions occur near the propellant crack surface, and the
combustion zone is so thin that it is considered a plane.

2) Rate processes at the propellant surface are quasi~steady in the sense that

characteristic times associated with the gaseous flame and preheated pro-
pellant are short in comparison to that of pressure transient variatiom.
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3) Gases flowing in the propellant crack obey the Clausius or Noble-Abel
equation of state.

4) Bulk flow in the pore is one-dimensional [24].

To describe gas-phase behavior inside a solid propellant crack, mass,
momentum, and energy equations in unsteady, quasi-one-dimensional forms have
been developed, based upon the balance of fluxes in a control volume within the
propellant crack.

The mass conservation equation is

a(pAp) B(DuAp)
ot + ox rbpper @

The momentum conservation equation is
) 3 2 ap
_— 4o — = = £ 4+ =
St (puAp) K (pApu ) A (APT
- - 1
T pwcos e + pA.pBx (pprerb) ng sin Ow (2)

The energy conservation equation written in terms of the total stored energy
(internal and kinetic) per unit mass, E, is

9 a_ - 9 9T, _ 38
SE (pApE) + o (pApuE) = o ()\Ap Bx) e (Ap pu)
+ 9 - % _
ox (TxxApu) + pprrbpbhf hcpP%(T Tps) (3)
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The conservation equations are further simplified by an order of magnitude
analysis in which the following terms are negligible: 1) forces between mole-
cules due to viscous normal stress in axial direction; 2) viscous dissipation
and rate of work done by the force caused by viscous normal stresses in the energy
equation; and 3) axial heat conduction between gas molecules in the energy
equation,

The propellant surface temperature at a fixed location along the crack before

the attainment of ignition is calculated from the solid-phase heat conduction
equation written in unsteady one-dimensional form:
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where the length variable y is measured perpendicular to the local propellant
crack surface. Initial and boundary conditions are

T (0¥ =T, (5)
Tor (t, ©) = Tos (6)
T__ Ec(t)

_P—ay (t, 0) = - >‘pr [T(t) - Tps(t)] N

The heat conduction equation is solved by using an integral method [25]
which employs a third-order polynomial, or by direct numerical solution of Egs.
(4-7) with variable mesh size in the subsurface.

For the gas phase, the Noble-Abel equation is used for the equation of
state:

P(%- - b) = RT (8)

The gas-phase equations, i.e. Eqs. (1), (2) and (3), are non-linear, inhomo-
geneous, partial differential equations. Along with the partial differential
equation for the solid phase (Eq. (4)), they are solved simultaneously, using the
finite difference method. The derivation described above was implemented into a
computer program, crack combustion code (CCC) by Kuo et al. [26].

-

STRUCTURAL ANALYSIS

To conduct the structural analysis of the solid propellant, three main
features must be included in the numerical formulations: 1) modeling of
viscoelastic material behavior, 2) simulation of ablating boundary, and
3) treatment of material responses by an interpolation scheme. Each feature
is outlined below.

Viscoelastic Material Model

The material behavior of the solid propellant is assumed to be visco-
elastic in shear and elastic in bulk. Only the isothermal condition is considered.
The stress-strain relations with zero initial conditions are written in two parts.

1) Shear behavior:

d ' '
d—tT eij (t')de 9)

t
= -t?
Sij Jo Gl(t t'")
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where Gy is the relaxation modulus in shear.
materials, it is usually considered

M
G1 = go + Z gm e
m=1
2) Bulk behavior:

Gkk = 3K Ekk

For most viscoelastic
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m
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As discussed in [27], the incremental stress-strain relations in matrix form

are written as
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and the term mcij has a recursive relationship, i.e.,
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The advantage of Eq. (19) is that all of the strain history can be obtained by

referring only to information in the previous time step, thus reducing computer
storage and numerical calculations.

From the virtual work principle and the relationship of Eq. (12), the finite
element equilibrium equations for a typical time interval ([t, t + At] can be
derived as

K] {Av} = {Af} - {fo} 1)
where K] = S [B]T [DVE] [B] dv (22)
and £} =7 [B]T {0} dv (23)

Simulation of Ablating Boundary and Mesh Generation

Burning of the propellant causes a significant change in geometry, thus
presenting complications in finite element structural analysis. The effect of
ablating boundary is accounted for by redefining the finite element mesh at speci-
fied time intervals. This involves two stages of calculations: 1) tracking
of the ablating boundary, and 2) generation of new finite element mesh. With

some modifications, the procedures adopted herein are similar to those presented
in [22].

Consider a structural geometry with ablating boundary. The spatial posi-
tions of the ablating boundary are determined by the ablation velocities which
are found from the combustion analysis at discrete times. It is assumed that
the ablation occurs always in the directon normal to the boundary. For struc-
tural analysis, the entire surface is divided into an ablating part and a non-
ablating part; each part is formed by discrete line segments joining at the nodes
of the finite element mesh. The new position of each line segment is located from
the given ablating velocity. Consequently, the new boundary nodes are determined
by calculating the intersections of two subsequent new line segments. Likewise,
the nodes at the intersections of new ablating and non-ablating boundaries are
then determined.

During the locating process, however, some of the boundary nodes may not lie
on the new boundary and thus must be eliminated. If the distance from the tip
of the normal vector at a new nodal position to any node on the original boundary
is less than the value of the normal itself, the node is removed.
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In general, the total number of nodes on the boundary at discrete times
will be different because some of the nodes have been removed. However, in
the analysis it is more convenient to generate a finite element mesh similar to
the original one so that interpolation of material response can be made. One
way to accomplish this is by keeping the number of boundary nodes constant.
Consequently, the boundary nodes are redistributed between two discontinuity
points which are specified in the input data in such a way that the lengths
of the new line segments have the same ratio as those of the original lines.

Once the new boundary nodes are defined, an automatic mesh generation
scheme is used to create the interior nodes for further analysis. Because of
its flexibility in obtaining a desirable mesh, a Laplacian-isoparametric grid
.generation scheme [28] is utilized. However, this method is limited to a
geometry bounded by four sides. A finite element mesh is shown in Fig. 1. The
coordinates of the i-th interior node can be expressed in terms of those of
neighboring nodes by

= —1 _

Vi = Tomay Oy v Y0 v Y T yy) - Wl F e F Yyt Yie)] (24)
=1 _ B

25 = G [2(z; t 2, v 23t 2,,) —wlz o+ 20+ 2.+ 2.4)] (25)

where w is the weighting factor for adjusting the distribution of interior nodes,
and 0 < w < 1.

Setting up the equations for each interior node yields two systems of simul-
taneous equations. It is observed that the resulting systems of equations are
banded and symmetric. The Gaussian elimination scheme is employed to solve for
the coordinates of the interior nodes,

Interpolation of Material Responses

As seen from Eq. (16), the stress increment Ao for the time interval
[t, t+At] varies with material properties and with the strain history at both
current and previous time steps. When the region of an element changes over a
period of time due to ablation, the material response history of the new elements
is lost and must be determined by an interpolation procedure from the old ele-
ments at previous time steps. Accordingly, the interpolation procedure is carried
out on the element level. For calculations, the material responses are separated
into two groups: the first includes such variables evaluated at the Gaussian
integration points, i.e., AC Ae and C%t,; the second includes the nodal
displacements which are evaluited aE nodaT pglnts. In the present calculations,
two limitations are imposed: 1) eight-node quadrilateral elements are used
throughout the analysis; and 2) the four sides of each element remain straight
before and after ablation.

1) Interpolation of Gaussian variables - It is noted that the quadratic dis-
placement approximation of an eight-node element yields a linear strain varia-
tion. With this fact in mind, the quantities of Gaussian variables at nodal
points are first evaluated for évery old element. As shown in Fig. 2a, b, this
can be done by using the linear isoparametric shape functions, namely,
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For each new element, the local coordinates (r, , s) of the k~th Gaussian

point are known. The global coordinates, (yk, zk), of that point are, therefore,
computed by using the following equations:
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After (yk, z. ) are found, the old element to which the point belongs must be
identifieéd. "A search process based upon the values of r' and s' is developed for
this purpose. The search starts from the old element which corresponds to the
neighboring elements. Equations for such calculations are given by

4
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Fig. 2c shows how to identify the element to which the points, (r', s'), belong.
Once the location of the point is verified, an interpolation procedure is per-
formed, using the relationship

4
w, = .Z hi(r', s') * wi' (29)
i=1

2) 1Interpolation of nodal displacements - A similar procedure to that explained
above is also used to determine the position of the node in question with refer-
ence to the old element. However, the interpolation procedure in Eq. (26) is no
longer necessary since the nodal displacements are known. The nodal displacements
of the new mesh are computed from

8
d; = izl h (r', s') * di' (30)

where hi are the standard quadratic isoparametric shape functions.



All formulations discussed in this section have been implemented into a
general purpose nonlinear finite element program called NFAP for conducting
viscoelastic analysis of solid propellant with ablating boundary. Some numer-
ical examples are presented in a later section.

COUPLING EFFECT

For structural analysis, the boundary condition along the crack geometry
is defined by pressure distribution which varies with time, and ablation velocity;
both are determined from combustion analysis. In the combustion analysis, the
regression rate of the propellant is dependent on the deformed crack geometry.
Therefore, the two processes are strongly interdependent. Such a coupling effect
is obtained by combining the analysis of two computer programs: a crack combus-
tion code (CCC) and a structural analysis code (NFAP). Both codes were developed
independently to facilitate program verifications. Linkage of the two codes was
made subsequently.

The coupling effect considered in the present analysis is limited to the
major parameters, namely pressure loading, ablation velocity, and crack deforma-
tion. Pressure and ablation velocity are calculated by the CCC at each nodal point
located on a one-dimensional grid along the length of the crack. The analysis
of crack combustion incorporates the crack geometry variation caused by both
mechanical deformation and mass loss through gasification of the propellant
surface. Once the gas-phase equations are solved and the pressures and ablation
velocities along the crack are calculated for a given time t, the data are trans-
ferred to the NFAP as the input information. NFAP then simulates the updated crack
geometry from the ablation velocities and generates a new finite element mesh.
With the new mesh and pressure data, NFAP updates the stiffness matrix and inter-
polates material responses for conducting a quasi-static analysis at time t. After
obtaining the deformation, the change in the crack width at each finite different
node is calculated and added to the existing crack width. Since the crack width is
the input of the combustion analysis, one cycle of calculations is thus completed.
The same procedure is followed for every specified time increment.

EXAMPLES

For program verification and demonstration of its analysis capability, three
sample problems were run either by NFAP alone or in the combined NFAP/CCC program.
The results of the analysis are discussed in the following. The numerical results
obtained from CCC alone are contained in reference [26].

1. A Reinforced Thick-walled Cylinder

Figure 3 shows a cylinder of viscoelastic material bonded by a steel casing
and subjected to a step~function internal pressure. The example was selected
because it is composed of two different materials and the analytical results
are readily available for comparison. Only five eight-~node axisymmetric elements
were used to model the cylinder. The material properties of the elastic casing
are

E = 2.068 x lO6 MPa v = 0.3015
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The material properties of the viscoelastic core are defined by

K = 689.5 MPa G1 = 51.71 * exp (-0.1lt) MPa

In Fig. 4, the variations of circumferential stresses with time are plotted
for comparison with the analytical solution obtained in [9]. It is observed that
both solutions agree very closely. This problem was analyzed previously by
Zienkiewicz et al. [18], using strain rate formulation of the finite element
method. However, the formulation presented in the present paper is more easily
incorporated into the NFAP program.

2. A Star-shaped Solid Rocket Motor

As an application of the present approach in dealing with the moving boundary,
a star-shaped solid rocket motor was analyzed by assuming both a constant and
ablating inner boundary. The configuration and finite element mesh are shown
in Fig. 5, and the material properties of outer casing and inner propellant are
identical to those of the first example. Taking advantage of the symmetry
condition, only a 30°-sector was modeled by finite element mesh. The contours
of maximum compressive stress analyzed by constant inner boundary at various
times are shown in Fig. 5. Comparing the present results with those of [18], it
is evident that the general pattern is quite similar but that some small differences
do exist. Since the geometry of the rocket motor in [18] was not clearly defined,
the difference in dimension used in these two analyses could be the cause of such
deviations.

The actual case of a solid rocket motor can be modeled more closely by con-
sidering the inner boundary being ablated. Figure 6 shows the contours of maximum
compressive stress predicted by NFAP, using the option of moving boundary. The
results obtained are quite different from those of [18]. However, observing the
differences between Figs. 5 and 6, we can conclude that the results obtained by
NFAP are quite reasonable. The solution reveals that the high stress region
obtained for ablating boundary propagates faster than that with non-ablating
boundary.

3. A Propellant Crack Specimen

As a final example, a propellant crack sample was analyzed, using the
combined NFAP/CCC program to demonstrate the coupling effect. The initial geo-
metry and finite element mesh generated by NFAP is given in Fig. 7. The crack
is 0.15 m long and the initial gap-width is 0.89 mm. The web thickness is
8 mm along the crack and 20 mm at the tip. Because of symmetry, only half of the
sample was modeled by 80 plane strain elements. The shear relaxation modulus of
the propellant was assumed to be

Gl(t) = 1,461 + 7.43 * exp (-.095t) MPa; and K = 4,826 MPa,

Calculated pressure distributions at various times, from the CCC alone, are
given in Fig. 7. The burning phenomenon of the propellant can be briefly des-
cribed as follows. The pressure in the chamber increases with time, causing
the hot gases to penetrate further into the crack. As time passes, the pressure
wave travels along the crack and is reflected from the closed end. At about
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200 us, the pressure front has already reached the tip and is reflected, causing
pressure at the tip to increase.

Figure 8 shows the results obtained from the combined NFAP/CCC program.
During the initial period, the general trend of the pressure distribution is simi-
lar to that from convective burning analysis alone. However, as time progresses,
noticeable differences between the two cases begin to appear. Up to 200 ys, the
pressures obtained from the combined analysis are lower, except near the crack
entrance region. At t = 300 Us, two pressure peaks appear. At t = 325 us, three
pressure peaks appear. These pressure peaks are caused by the partial closure of
the gap. The deformation pattern of the propellant is quite irregular because
of the uneven distribution of the pressure along the crack surface. The elements
at the crack entrance are compressed by the high chamber pressure, which results
in the propellant being pushed into the crack. Since chamber pressure increases
more quickly than pressure inside the crack, the propellant is pushed toward the
lower pressure region inside the crack. The mechanical deformation of the
propellant causes narrowing of the crack width, and consequently results in a local
crack closure. This local gap closure manifests itself in a pressure peak. The
localized pressure peaks or gap closures move along the crack. At t = 325us, this
localized pressure phenomenon becomes evident at x/L = 0.167, 0.433, and 0.633.

CONCLUSION

The computer program for evaluating the coupling effect between convective
burning and structural deformation was developed by combining the Crack Combustion
Code and a Nonlinear Finite-Element Analysis Program. In structural analysis,
the linear viscoelastic material model, together with the capabilities of simu-
lating ablating boundary and interpolating material responses, was considered.
Also, the coupling effect estimated by the combined analysis shows some signifi-
cant interaction between the combustion and mechanical deformation. This pheno-
menon will be verified further by future experiments.

78




SYMBOLS

1. Combustion Analysis

AP = cross-sectional area of crack

Bx = body force

b = co-volume

cP = gpecific heat at constant pressure

E = total stored energy

E; = local convective heat-transfer coefficient

E;p= local convective heat-transfer coefficient over propellant surface
E;w= local convective heat-transfer coefficient over nonpropellant port wall
hf = enthalpy of combustion gas at adiabatic flame temperature

Ph = burning perimeter

PW = wetted perimeter of port

p = static pressure

R = specific gas constant for combustion gases

ry = burning rate of solid propellant, including erosive burning contribution
T = temperature (without subscript, static gas temperature)

Tf = adiabatic flame temperature of solid propellant

Tpi= initial propellant temperature

Tps= propellant surface temperature

Tws= nonpropellant wall surface temperature

t = time

u = gas velocity

ng= velocity of propellant gas at burning surface

x = axial distance from propellant crack opening

vy = perpendicular distance from propellant surface into solid

o = thermal diffusivity
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Subscripts
i =

PY =

Cc

ratio of specific heats

thermal conductivity

gas viscosity

density (without subscript, gas density)
shear stress on port wall

normal viscous stress

angle measure, in a counterclockwise direction, at lower side of
propellant, degree

initial value
solid propellant (condensed phase)

rocket chamber

2, Structural Analysis

S, .
1]
e..
1]

O'ij

{Ac}
{Ae}
{c }

(o]
{x1]
[ 1T

L]

stress deviators

= strain deviators

= stress tensor

= shear relaxation modulus
= bulk modulus

= a quantity at time t

incremental stress

incremental strain

equivalent initial stress vector due to viscoelastic behavior
= stiffness matrix
= transpose of matrix

= pumber of terms of series in relaxation modulus




material constants in relaxation modulus

increment of nodal displacement vector

viscoelastic material matrix

: strain-nodal displacement transformation matrix

values of Gaussian variables at k-th integration point referred
to old element i

values of Gaussian variables at i-th nodal point referred to
old element

local coordinates of k-th integration point referred to old
element

global coordinates of i-th nodal point referred to new element
i-th nodal displacement referred to new element
i-th nodal displacement referred to old element

local coordinates of point in equation referred to o0ld element
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ITERATIVE METHODS BASED UPON RESIDUAL AVERAGING

J. W. Neuberger

This paper concerns iterative methods for solving boundary value prob-
lems for systems of nonlinear partial differential equations. The methods
involve subtracting an average of residuals from one approximation in order
to arrive at a subsequent approximation.

The paper is divided into five parts. The first part gives two ab-
stract methods in Hilbert space. The second part shows how to apply these
methods to quasilinear systems to give numerical schemes for such problems.
The third section contains some specific applications. The fourth part con-
tains a discussion of some potential theoretic matters related to the iteration
schemes. The final part indicates work in progress concerning extensions and
improvements of the above.

1. Two abstract iterative schemes. Suppose H is a Hilbert space, H’ a
closed subspace of H and P is an orthogonal projection on H whose range is a
subset of H’. Suppose also that L is a strongly continuous function from H to
L(H,H) so that L(U) is an orthogonal projection for each U in H. It will be
seen how a variety of boundary value problems for nonlinear systems may be re-
duced to the problem of finding U€H’ so that

(1) L(D)U=0, P(U-W) =U-W
where W is a given element of H’. It will be seen that the first part of (1)
represents a quasilinear system and the second part of (1) is a way of as~
serting that U satisfies boundary conditions described by the given element W.
For §>0 an iterative scheme for attempting to find U satisfying (1) is

(2) Wo =W, W, =W -6PL(W )W ,n=0,1,2, ...

1
d ‘

1f {Wn}n=0 converges to UE€H’, then
(3) P(U-W) =U-W and PL(U)U=0.

A solution U to (3) is called a quasisolution to the problem (1). See ref. 1
for a discussion concerning quasisolutions vs. actual solutioms.

A second scheme uses a continuous iteration parameter but is otherwise
similar to (2): Define Z :(0,»)> H so that

(4) Z(0) =W,z7 (t) =-PL(Z (£))Z (t) , t=0.

If U=1lim Z (t) exists, then U satisfies (3).
t> o>
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For numerical schemes one is interested in finite dimensional choices
for (2) under fairly unrestrictive hypothesis on P and L. In ref. 2 it is
shown that (2) always “converges in the linear (L(x) independent of x€H) for
§=1. Similar results may be obtained for (4) by noting that (4) is a lim-

iting case of (2) as § =0.

2. Quasilinear systems; use of finite differences. It is first indi-
cated how a fairly general second order quasilinear system may be placed in a
setting to which the iterative schemes (2), (4) apply. Extensive generali-
zations will be evident.

Suppose Q is a bounded open subset of R? and each of R,S,T is a contin-
uous real-valued function on R3. Functions z,u,v on Q are sought so that

R(z,u,v)uy +S(z,u,v) (up +v;) +T(z,u,v)v, =0
(5) Zl-'U.:O
z, —v=0
where uj =8u/8x, up =68u/dy etc.
If appropriate derivatives exist and (5) holds, then
(6) R(z,21,29)2z11+25(2,21,29)212+T(2,21,22 )22 =0.

Pick two Biecewise smooth one-dimensional curves T and T/ in Q and a
function WE€C (). Consider boundary conditions for (5):

z(p) =w(p),p€T

U(P) £(p) W1<P) f(p))
@) <(V(p) 4 g(p) > < Wz(P) s (P)> ,PET

where <§Eg;> denotes the direction normal to T'’/ at p.
Define A:R3+L(R%,R3) modeled on (5) so that
A(rssyt)(a,al9323bsb1’b23Csc1:C2) =
R(r,s,t)b; +S(r,s,t) (by+c;) +T(r,s,t)co
al -b
as —c¢C
(r,s,t),(a,a]_,az),(b,bl,bz),(c,cl,c2)€R3 .
Note that if z,u,ve€ ‘1 (?) and

A(z(p) ,u(p),v(p))
(z(p) ,z1(P) »22(p) ,ulP) ,u; (p) ,us (p),v(p),v1(p),va(p))=0,
then z,u,v satisfy (5).
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Denote L, (R)? by H, denote by H’ the set of all (z,z’,u,u’,v,v')CH
where z’/ = (z1,2) etc. and all indicated derivatives are L, generalized deri-
vatives (cf ref. 3). Denote by HY the set of all (z,z’,u,u’,v,v/)€H’ so that

z(p) =0, p€T
u(p)> f(p)> - /
=0, T
<(v<p) : <g<p) pe
and denote by P the orthogonal projection of H onto Ha.

To complete a description of how (5), (7) are carried over to (1) a de-
scription of L is required. Denote L2(§)3 by K and define C:H-+L(H,K) so that
if U,Z€H, then for almost all p€Q,

(C(0)Z) (p) = (ACQ)A(Q) ™ ~2A(q) ‘21 (p)

where q = (r,s,t) and r,s,t are the first, fourth and seventh elements respec-—
tively of U(p). Finally for U€H, L(U) = C(U)*C(U).

For w as above, define W= (w,w;,ws). Start iteration (2) with W. Then
for n=0,1,2, ..., W, has the property that the triple consisting of the first,
fourth and seventh elements of Wn satisfy (7). Similar statements hold for the

iteration (4).

It is now indicated how a finite difference scheme for (5),(7) may be
constructed by defining finite dimensional spaces H and K which approximate H
and K above. Suppose Gy is a rectangular grid with even spacing § so that
G =Gg ﬂﬁ has the property that if p€G, then at least one of p+<Sei is in
G,i=1,2, where ej,ep is the standard basis for R2. Define K to be a vector
space of all real-valued functions on the grid G. For u€XK, define

(u(p+6ei)~u(p—6ei))/(26) if p+6ei,p—6ei€G
(Diu)(p) = (u(p +38e,)-u(p)) /8 if p-de; ¢c
(u(p)—u(p—éei))/d if p+de; €G,1i=1,2, p€G.
Define §_=_I§9. For (z,u,v)E_IS?’, define
p(z,u,v) = (z,D12z,Dp2z,u,D1u,Dou,v,D1v,Dov). Denote by H’ the range of D.
’

Define I',I'" subsets of G approximating I' and I'’ respectively. Denote by Ho'
the set of all D(z,u,v)€H’ such that

z(p) =0, p€L

EE) )Y - o per

Denote by P the orthogonal projection of H onto Ho' . Pick wEK approxi-
mating w above. Define z=w, u=Diw, v=Dow and choose
EO = (_Z_,Dl5,D2_Z_,5,D1_1}_,D22_,17_,D1Y_,D22) and

(9) Wo,,=W -PL(W )W ,n=0,1,2, ...
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where L is defined essentially as above. Condition (8) on P implies that
boundary conditions are preserved under the iteration (9) and hence are sat-
sified by a limit of {Wn}:=0'

Similar statements hold for a finite dimensional counterpart to the
iteration (4).

Process (4) in this finite dimensional setting becomes a variant of the
"method of lines". It specifies one equation and one 'unknown' for each point
in the grid G. The 'time' parameter is iteration number, not a distinguished
variable in the system of differential equations. Use of (4) then may extend
the use of the 'method of lines' to a larger class of problems.

3. Applicatiomns.
Take Q to be a bounded region in R%. Define R,S,T in (5) so that

R(z,u,v) =1+v?
S(z,u,v) =-uv
T(z,u,v) =1+u?.
System (5) then is

1 +V2)U,1 ~uv(uy +vy) + (1+u?)v2=0

z1-u=0

zo-v=0

As a single second order equation this is

(1+2z3)z11 ~ 22725215+ (1 + z%) z95 =0,

the minimal surface equation for real-valued functions on a region in R2.
Conditions are specified by

Z(P) = f(P) ,PE D Q,

for some given function f. The FORTRAN code listed in ref. 4 may be easily
modified to deal with this equation.

If y,a_,u_ are given positive numbers and R,S,T are chosen so that
R(z,u,v)==a°2°+((Y—l)/Z)(ui—uz—vz)-—u2

S(z,u,v) =-uv

T(z,u,v)==a°2°+((y—l)/2(u°2°—u2—v2)--v2
then (5) reduces to the transonic flow equation used in reference 4 (and
taken from reference 5). Tor numerical computations, boundary conditions at

infinity are replaced by appropriate boundary conditions on the boundary of a
large box. One also has zero normal derivative conditions on an airfoil inside
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the box. See references 4, 5 for details. The FORTRAN listing in reference 4
is specifically for this problem. Printouts of results for various mach num-
bers (u,/a,) are given there.

4. Finite dimensional potential theory. The main computational effort
connected with (9) is the calculation of Px for various x€H. Denote by Jj
all (z,u,v) €K3 satisfying (8) and denote by m the orthogonal projection of__Ig3

onto Jg. From ref. 2 it follows that P =DE™l7D* where EIEWD*D[JO. Hence

the main work in calculating the action of P is the solving for x (given y)
in linear systems

(10) Ex=y.

Now Jy is a Dirichlet space in the sense of ref. 6 and E is the corresponding
Laplacian for Jg. So, E~! being the inverse of a Laplacian, the effect of
multiplying a vector y by E-! is to take a certain nonnegative weighted aver-
age of the components of y. References 2 and 4 contain descriptions of methods
for solving (10).

5. Extensions and Improvements.
A promising replacement for (4) is given by
(11) z(0) =wz'(t) =-(V$)(2(t)), t =0

where o(x) E%[[A(X)XHZ,XGII, A being defined as in section 3. One has the
following explicit expression for the gradient of ¢:

(V¢) (x) =P[A(x)*+(Xx)*]A(x)x,xEH.

Then (11) becomes a steepest descent process. In a number of examples, the
only critical points of ¢ seem to be solutions to (3). Furthermore, solutions
z to (3) remain bounded and so converge to a solution u to (3).

Work is in progress concerning the adaptation of (2), (4) and (11) to
finite element spaces rather than finite difference schemes. It is expected
that methods will be developed which use finite element spaces but have little
else in common with conventional finite element methods. See reference 7 for
some preliminary results.

95



5. G.
6. A.
7. J.

REFERENCES

W. Neuberger: An Iterative Method for Approximating Solutions to Non-
linear Partial Differential Equations, Applied Nonlinear Analysis,

Academic Press, 1979.

W. Neuberger: Finite Dimensional Potential Theory Applied to Numerical
Analysis of Linear Systems, Linear Algebra and Applications, 35(1981).

(To be published.)

G. Ciarlet: The Finite Element Method for Elliptic Problems, North
Holland (1978).

W. Neuberger: A Type-independent Method for Systems of Nonlinear Partial
Differential Equations: Application to the Problem of Transonic Flow,
Computers Math. Appl. 6(1980), 67-78.

F. Carey: Variational Principles for the Transonic Airfoil Problem,
Compt. Math. Appl. Mech. Engng. 13(1978), 129-140.

Beurling el J. Deny: Espaces de Dirichlet, I. Le Cas Elementaire, Acta
Math. 99 (1958).

W. Neuberger: A Type-independent Iterative Method Using Finite Elements,
Proceedings of Third International Conference on Finite Elements in Flow
Problems, D. H. Nome, ed., Univ. of Calgary, Calgary, Alberta, Canada,

1980.

Department of Mathematics
North Texas State University

Denton,

96

Texas 76203



COMPUTATIONAL STRATEGY FOR THE SOLUTION OF
LARGE STRAIN NONLINEAR PROBLEMS USING THE WILKINS
EXPLICIT FINITE-DIFFERENCE APPROACH
R. Hofmann

Science Applications, Incorporated
2450 Washington Avenue, Suite 120
San Leandro, California 94577

SUMMARY

The STEALTH code system, which solves large strain, nonlinear continuum
mechanics problems, has been rigorously structured in both overall design
and programming standards. The design is based on the "theoretical elements
of analysis'" while the programming standards attempt to establish a paral-
lelism between physical theory, programing structure and documentation.
These features have made it easy to maintain, modify and transport the
codes. It has also guaranteed users a high level of quality control and
quality assurance.

INTRODUCTION

A computer code system called "STEALTH" (ref. 1)*, has been developed
for the Electric Power Research Institute (EPRI) for the primary purpose of
solving nonlinear, static, quasi-static and transient problems involving
both fluids and solids. The numerical technology for this computer program
is based on the developments of Wilkins (ref. 2) and Herrmann (ref. 3).
Although this technology was originally developed for large deformation,
fast-transient defense-oriented applications (figure 1), it has been adapted
to be quite useful for studying thermal-hydraulic mechanical transients
(figure 2), nuclear waste isolation geologic burial stability (figure 3) and
a variety of structure-medium interaction (SMI) problems (figures 4 and 5).
The design and development of general-purpose

7""'__S_._ol:lds and Thermal hydraulics codes for EPRI Adapated from Lagrange
I00DY and HEMP", developed for Electric Power Research Institute by
Science Applications, Inc., under contract RP307.
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STEALTH involved extensive planning in order to make it adaptive enough to
handle this wide variety of nonlinear problems. This paper describes the
strategy that was (and still is) used.

ARCHITECTURAL OVERVIEW

The overall structure of the STEALTH nonlinear code system has been
built around a particular view of the physical equations being solved. This
view is based on the "theoretical elements of analysis of a physical system"
which are summarized in Table l. The theoretical elements of analysis are a
convenient conceptulization for solid and fluid mechanics problems. It
separates physics laws, material response characteristics, geometric aspects
(e.g., boundary conditions) and initial conditions. These distinct ca-
tegories are not only convenient theoretical groupings, but are also useful
programming and documentation entities.

The STEALTH architecture based on this view has stood the test of time
for over five years and continues to be quite flexible and adaptable to new
problems and more complex situations. Among the many adaptive features are
(1) the ability to couple other computer programs, (2) a standard procedure
for externally developed constitutive models, (3) a modular topdown archi-
tecture with a FORTRAN syntax that makes developing and changing subroutines
easy, and (4) a general-purpose, special-purpose version arrangement that
guaranteés good quality assurance. Finally, it has been possible to add
new capabilities that were not specifically anticipated when STEALTH was

originally designed.

STEALTHs 1D, 2D, and 3D are based on a modular architecture in which
many subroutines and COMMON blocks in each code are identical in every de-
tail. The top—-down design that was implemented requires each code to have
the same calling sequence at its highest levels. Subroutines and COMMON
blocks which must be different are found at the lowest (innerrmost) levels
of STEALTH. In between, there are subroutines that have identical names,
functions, and structure, but different specific programming.

The actual FORTRAN programming utilizes a subset of FORTRAN that is
common to IBM, Univac, and CDC computers. The use of these FORTRAN state-
ments is further restricted by format conventions that produce very struc-
tured programming. In addition, FORTRAN variable names are formed by com-
bining three-character roots with one- and two-character prefixes and suf-

fixes.

The STEALTH codes have been designed to be most efficient for the occa-
sional user. The standard version combines extensive checking logic which
checks and rechecks a user’s input and checks and rechecks the status of the
calculation as it proceeds. The codes also provide many standard models for
materials, boundary conditions, etc.
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Computer memory requirements range from 135 000 to 155 000 words of
octal storage in CDC 7600. This size has been achieved by overlaying the
GENERATOR. Further reduction of code size can be achieved by either over-
laying the GENERATOR some more, overlaying the PROCESSOR, or by reducing the
size of certain COMMON blocks. Reducing the size of COMMON blocks usually
results in a reduction in the number of grid points that can be computed.

Other tailorings of the codes can be made to suit specific computing
environments and/or problems. For example, it is simple to put "“hardwired"
material models into the code to improve code speed. It is also possible to
remove the trace and debug options, again improving speed. For short pro-
duction runs where generation is a larger proportion of the run time, it is
possible to write a pregenerator to reduce GENERATOR costs. Finally,
special-purpose versions of STEALTH can be created in order to improve effi-
ciency. For example, a hydrodynamic-only version of STEALTH runs 207 faster
than the standard version for the same fluids problem.

The FORTRAN coding conventions and the structural modularity make
STEALTHs 1D, 2D, and 3D portable and device-independent. Word size and
memory storage limitations are determined from the requirements of an actual
calculation. For most calculations, it is desirable to use a machine which
has a word size greater than 48 bits and memory of at least 30 000 decimal
words. However, it is possible to perform STEALTH simulations at a werd
size of 32 bits and a memory of 20 000 decimal words. The STEALTH code sys-
tem is made up of more than 100 000 FORTRAN cards.

PROGRAMM ING STRUCTURE

The development of a user-oriented, well documented, Wilkins explicit
finite-difference computer code is based on the premise that programming
structure, input/output, and documentation should be formulated from physi-
cal rather than mathematical (or numerical) concepts. Theory, code struc-
ture, and documentation are fundamental categories in the discussion of user
orientation. Elements of these categories (Table 2) should be as similar in
vocabulary and notation as possible. Using the theoretical elements of
analysis as the basis for this design, automatically links the physical
theory and programming structure in a way in which program development is
easily achieved. In the discussion that follows, a standard view of program
structure has been adapted to these concepts.

The STEALTH computer programs do numerical simulations as opposed to
numerical evaluations. A simulation is carried out through execution of
three separate ''phase groups'". Appropriate names for these phase groups are
GENERATOR, PROCESSOR, and OUTPUT ANALYZER. (Analogous processing concepts
exist for computer systems. They are: compiler/loader, central
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processing unit (CPU), and output devices, respectively.) The conceptual
functions of each phase group are summarized below.

® The GENERATOR accepts detailed data (from cards or keyboard) as
input for many different types of computer calculations. All input
data are checked as thoroughly as possible. If no serious errors
are detected, an input file for the appropriate PROCESSOR phase
group is prepared.

® The PROCESSOR accepts preresolved (link-edited) data from the
GENERATOR as a complete specification for a calculation in order to
perform a specific physics calculation. During the calculation,
output data are prepared to be input for both the OUTPUT ANALYZER
and the GENERATOR. These data take the form of archive files. The
file for the GENERATOR is called the restart file, while the data
for the OUTPUT ANALYZER are known simply as archive data. The
PROCESSOR is analogous to a CPU. 1Its primary purpose is to compute
(crunch numbers) and direct data to output devices.

@® The OUTPUT ANALYZER accepts data from the GENERATOR or PROCESSOR
phase groups in archive format. It performs analysis functions such
as plotting, special printing, data reduction, etc. Output data
from the OUTPUT ANALYZER are presented either in hard copy form or
as input files for other OUTPUT ANALYZERS. It is exactly analogous
to hard copy output functions of a hardware printer, plotter, or
other output device.

Figure 6 is a schematic display of the interaction between phase groups.

The GENERATOR phase group is a combination compiler/loader. For exam-
ple, input to the compiler function of the GENERATOR is the code input for a
particular problem. The loader (link-editing) function of the GENERATOR
performs the task of resolving several types of input into a single file to
be read by an appropriate PROCESSOR. The GENERATOR is capable of setting up

(loading) a variety of problems from a spectrum of input modes. There are
two GENERATOR input modes, standard and nonstandard.

® Standard Record Format (start or restart)

cards
keyboard

® Nonstandard Input (start only)

library file
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The PROCESSOR phase group is analogous to the CPU of a computer. Its
purpose is to compute physics from appropriate algorithms. Input data for
the PROCESSOR are prepared by the GENERATOR. Output data are in the form of
an archive file. The archive file contains a complete summary of all the
results of the physics calculations performed. The format of the file is a
self-contained, easy-to-read format and is designed to be used by other pro-
grams as input (e.g., programs in the OUTPUT ANALYZER phase group can read
the archive file as input). An abbreviated form of the archive file, known
as the restart file, is created as an input file for the GENERATOR. If a
calculation must be restated, it is more convenient to use the abbreviated
file than a complete archive file.

The OUTPUT ANALYZER phase group is composed of many different stand-
alone computer programs. Among these are plotting programs, Fourier
analyzers, data reduction codes, etc. Output analysis may be performed on
data from both the GENERATOR and PROCESSOR phase groups. All data are
transmitted in archive format but only the PROCESSOR creates a permanent
archive file. (The OUTPUT ANALYZER can be used to make a reduced archive
file, if required.)

Output from the OUTPUT ANALYZER phase group is usually in the form of
hard copy (that is, printed pages, plots, etc.). Files that are produced as
output are usually in archive format also so that they can be used as input
for other data analyzing functions. These files are not intended to be used
as input to the GENERATOR or the PROCESSOR, although it is conceivable that
they could be used this way-.

Phases are the logical subdivisions of a phase group. They are groups
of subroutines which perform a particular logical "macrofunction'" which
preserves the simplicity of physical concepts. 1In contrast, subroutines
perform "microfunctions' and are defined by a specific functional task such
as reading, checking, calculating, etc., or a well defined combination of
these tasks.

A phase group can be divided into as many phases as necessary. One
special phase known as the Utility phase is part of every phase group. It
contains subroutines which are used by more than one phase and which fall
into one of the following categories:

(1) System or Machine Dependent
(2) Input Related

(3) Output Related

(4) Enter/Exit

(5) Error

(6) Arithmetic

(7) Miscellaneous
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All phases are chosen from logical or conceptual considerations dictated by
the tasks to be performed by a particular phase group.

Phases in the OUTPUT ANALYZER cannot be defined a priori. This phase
group may require different phase structure for different types of problems
and different types of analyses, respectively. However, the GENERATOR and
PROCESSOR phases are amenable to a general design concept based on the phy-
sical notions associated with the partial differential equations being
solved.

The fundamental ideas behind the design of the phase structure for the
GENERATOR and PROCESSOR phase groups of STEALTH come directly from the
theoretical elements of analysis of a physical system. That is, logically,
STEALTH may be viewed in terms of the following distinct subdivisions:

® Conservation Equations

mass
moment um
energy

® Boundary Conditions

geometric constraints
boundary values

® Initial Conditions

intensive
extensive

® Constitutive Equations

mechanical
thermal

Designing the GENERATOR and PROCESSOR for STEALTH from these four ca-
tegories is relatively straightforward. The conservation equations (equa-
tions of change) are the equations to be solved; they are the kernel of the
PROCESSOR. They describe the response or motion of a physical system. The
initial and boundary values and the constitutive equations supply the condi-~
tions or constraints for solution. The computational network is formed from
the geometric constraints and the time~dependence specification.

The STEALTH GENERATOR phase group is broken down into nine phases which
are further divided into two groups. The first group contains two non-
optional phases which must be executed prior to the execution of other
GENERATOR phases and the Utility phase. The second group is composed of six
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opt ional phases which are used selectively to satisfy specific processing
requirements of a particular PROCESSOR. While the two nonoptional phases
in the former group must be executed in a particular order, the phases in
the latter group may be executed in any order.

The two phases in the nonoptional group are called CMNGEN and PRBGEN.
CMNGEN initializes all common blocks and PRBGEN provides data for a
GENERATOR scheduler. The GENERATOR scheduler is a subroutine which deter-
mines which of the latter group’s optional phases is necessary for a partic-
ular PROCESSOR.

The functions of the optional phases in the GENERATOR phase group are
(1) material model definition, MATGEN, (2) mesh or grid-point generation,
GPTGEN, (3) zone interior initialization, ZONGEN, (4) boundary value specif-
ication, BDYGEN, (5) time control, TIMGEN, and (6) edit specification,
EDTGEN. Figure 7 is a flow chart of the phases in the GENERATOR phase
group. Table 3 shows the correspondence between the six optional GENERATOR
phases and the logical elements of design.

Within each GENERATOR phase the subroutine calling structure (logic) is
similar. Each phase contains a phase scheduler subroutine which calls all
the "mainline" subroutines. The scheduler name is __ _ _GEN, where _ _ _ is
the phase name.

The mainline subroutines are an input processing subroutine, _ _ _INP; a
subroutine that checks input data, _ _ _CHK; a subroutine that prints out
relevant data for the phase, _ _ _PRT; and a subroutine that allows input and
computed data to be plotted, _ _ _PLT.

In addition to the mainline subroutines, there is a group of subrou-
tines known as "kernel" subroutines. These subroutines perform generation
tasks specific to that phase. Figure 8 shows a conceptual flowchart for a
typical GENERATOR phase. Kernel subroutines may be called at any time in
the phase, whereas mainline subroutines must be called in the proper order.

All GENERATOR phases may call Utility subroutines from any subroutine.
(Utility subroutines are defined as those subroutines which are common to
more than one phase in a phase group). However, certain utilities are
called from specific locations or only at specific times. For example,
ENTER/EXIT utilities are the first and last executable statements in each
mainline subroutine; only _ _ _INP and _ __ _CHK call ERROR utilities; INPUT
utilities are concentrated in _ _ _INP, etc. A list of typical utilities
are shown in Table 4.

Each PROCESSOR phase group is composed of eight phases —- one phase
less than the GENERATOR phase group (there is one phase corresponding to
each of the GENERATOR phases except the MN phase). For STEALTH, all phases
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are mandatory and all phases must be executed in a precise order. Figure y
displays the PROCESSOR phase group flowchart for serial STEALTH.

In each PROCESSOR phase there is at least one mainline subroutine called

_ _PRO. It is analogous to _ _ _GEN in the GENERATOR, where _ _ _ is the
phase name identifier. In the GPT and ZON phases there are two other main-
line subroutinmes, _ _ _OLD and _ _ _NEW. Subroutine _ _ _OLD transfers data

at times n-1/2 and n from array variable storage locations to storage loca-
tions in nonarray variables. These nonarray variables are used in physics
calculations to update "old" values of variables (times n-1/2 and n) to
"new" values of variables (times n+l/2 and n+l). Subroutine _ _ _NEW then
transfers the data at times n+l/2 and n+l from nonarray storage locations
to appropriate array storage locatiomns.

All other subroutines in the PROCESSOR are kernel or utility subrou-
tines. A special group of kernel subroutines, which describes material
model response characteristics, is found in the ZON phase of the PROCESSOR.

For a vector mode version of STEALTH, the PROCESSOR would take a
slightly different form at the subroutine level and would require a dif-
ferent phase calling order. However, the overall design concepts would
remain.

CONCLUSION

Implementing a structured architecture for the STEALTH code system has
made it (1) easier to debug and modify logic, (2) simpler for new users to
learn how the codes work, and (3) ideal for maintaining versions on dif-
ferent computer hardware. The 'theoretical elements of analysis", which are
the basis for program design in STEALTH, have proven to be a useful concept
for solving general nonlinear equations approximated by the Wilkins explicit
finite-difference solution technique.
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TABLE 1. THEORETICAL ELEMENTS OF A PHYSICAL SYSTEM
Conservation laws physical principles
governing all motion

Boundary conditions geometric constraints
and boundary values

Initial conditiomns initial state of things

Constitutive relations material models

TABLE 2. ELEMENTS OF THEORY, CODE STRUCTURE, AND DOCUMENTATION
AFFECTING USER ORIENTATION

THEORY
l. Physical Laws
2. Mathematical equations

3. Numerical equations

CODE STRUCTURE DOCUMENTATION
l. Programming practices l. Input manual
2. Modular structure 2. Flow charts
3. Input/Output 3. Vocabulary
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TABLE 3. CORRESPONDENCE BETWEEN OPTIONAL GENERATOR PHASES
AND CONTINUUM MECHANICS ELEMENTS OF ANALYSIS

Constitutive Equations (material models) - « « . « . MATGEN
Boundary Conditions (control volume definition)

geometric constraints =+ ¢ ¢ ¢ o o o o o o o « » GPTGEN
boundary values =« ¢ ¢ ¢ « o o o 2 « s« « s« « « « BDYGEN

Initial Conditions « « ¢ o ¢ o ¢ o ¢ o o ¢ o o o o @ ZONGEN
Conservation Equations . « ¢« ¢ ¢ o « o « s ¢ o « « o TIMGEN

OUutput « « = o o o o o o o o « o o« o« s « « o o o o« » EDTGEN

TABLE 4. TYPICAL UTILITY PHASE SUBROUTINES

SYSTEMS OUTPUT ENTER /EXIT ARITHMETIC
RUNDAT PGEHDG SBRENT FNCONE
RUNTIM TIMHDG PHSENT MYFNO

PHSHDG SBREXT FNCTWO
INPUT INPHDG* PHSEXT MYFENT
CHKHDG GENEXT FDVONE
CRDITL* PRTHDG PROEXT MYFDO
CRDINP* PLTHDG ERREXT
CRDPRT *
LIBTTL
LIBINP
LIBPRT ERROR MISCELLANEOUS
KBDTTL*
KBDINP* CHRERR INPDGT
KBDPRT FLDERR FLDCHK*
REWFLS LIMERR CNVDTA
RINREC MDLERR PHSCHK
GETDTA RGEERR
WOTREC SBRERR
PUTDTA TYPERR

*
Uses standard input record format
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SELF-ADAPTIVE INCREMENTAL
NEWTON-RAPHSON ALGORITHMS*

Joseph Padovan
University of Akron
Akron, Ohio 44325

SUMMARY

Multilevel self-adaptive Newton-Raphson type strategies are developed to
improve the solution efficiency of nonlinear finite element simulations of
statically loaded structures. The overall strategy involves three basic Tevels.
The first level involves preliminary solution "tunneling" via primative opera-
tors. Secondly, the solution is constantly monitored via so-called quality/
convergence/nonlinearity tests. Lastly, the third Tevel involves self-adaptive
algorithmic update procedures aimed at improving the convergence characteris-
tics of the Newton-Raphson strategy. Numerical experiments are included to
illustrate the results of the procedure.

INTRODUCTION

Finite element (FE) or difference simulations of continuum problems gener-
ally lead to nonlinear modelling equations [1,2]. Generally, such simulations
must be solved by various techniques which are inherently iterative in nature.
For instance, such methodologies as direct numerical integration, Newton-Raph-
son {(NR), and modified Newton-Raphson (MNR), as well as the incremental ver-
sions of such procedures (INR, IMNR) have all been employed [2]. Since the
types of nonlinearity exhibited by continuum problems are both diverse and com-
ptex, the question of the best choice of an appropriate solution algorithm
inevitably arises. Note, while many alternatives are available, generally the
various solution procedures may have special advantages for certain classes of
Problems but may exhibit poor convergence for other situations.

In this context, the ideal general purpose (GP) nonlinear FE code should
have numerous algorithmic options augmented with a degree of artificial intel-
ligence. Namely, the problem solving capability should involve a heuristi-
cally guided trial and error search in the space of possible solution via an
automatically structured algorithm. Unfortunately, because of the inherent
difficulties associated with code architecture and kinematic, kinetic, con-
stitutive and boundary condition formulations, generally only one algorithmic
option is usually available in GP codes. 1In this context, because of its wide

* This work has been partially supported by the ONR under Grant N0O0OO14-78-C-
0691 and by NASA under Grant NA63-54.
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applicability, most GP nonlinear FE codes employ some variant of either the
straight or modified INR algorithmic procedures.

Note, while nonlinear codes present the user with far reaching capabilities,
without a priori physical insight, expensive parametric studies are oftentimes
necessary to insure adequate solution convergence. For instance, unless the
proper Toad increment is employed, either poor convergence or out of balance
loads are generally encountered. Incorporating heuristic programming could
eliminate some of the expensive and time consuming parametric studies that are
now required to determine the proper incrementation necessary for reasonable

convergence.

In view of the shortcomings of the current generation of solution al-
gorithms, this paper will consider the development of self-adaptive NR stra-
tegies for the solution of nonlinear FE or difference simulations of stati-
cally Toaded structures. The main thrust will be to consider strategies which
for the most part are compatible with currently available GP codes. The over-
all development will be considered in three main levels. The first will in-
volve the use of INR operators to "tunnel" into the solution space in the usual
manner. The second level will involve the constant monitoring of the different
stages of solution via various quality/convergence/nonlinearity tests. Finally,
the last level is an outgrowth of the findings of the second; namely, if one or
more of the quality/convergence/nonlinearity tests are violated, various sce-
narios are then triggered to modify the INR strategy.

Based on the foregoing, the paper will outline in detail the multilevel
static solution strategy, the development of the quality/convergence/nonlinea-
rity tests as well as overview the various self-adaptive iterative update pro-
cedures. The analytical considerations will be complemented by several nume-
rical experiments which outline the various aspects of the quality/convergence/
nonlinearity tests and which demonstrate the self-adaptive strategy.

MULTILEVEL SOLUTION STRATEGY:
OVERVIEW

As noted earlier, unless the proper load incrementation is employed,
either poor convergence or out of balance loads are generally encountered.
Such anomalous behavior is generic to all nonlinear codes employing non-self-
adaptive INR algorithms. In this context, the main thrust of this work is to
establish a three level iterative solution strategy involving:

i) Level 1; Preliminary solution development via the primative but
computationally efficient IMNR algorithm;

ii) Level 2; Solution monitoring via quality/convergence/nonlinearity
tests and;

jii) Level 3; Self-adaptive update procedures to modify the primative
operator.
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Note here computational efficiency is meant to be a measure of the amount of
time spent during a cycle of iteration not the overall process.

The main purpose of the first level of the overall strategy is essentially
twofold. The first is to generate the most efficient solution if the requisite
quality/convergence/nonlinearity criteria are satisfied. If not, the infor-
mation generated by the IMNR "tunneling" of the solution space can, through the
second level tests, trigger the proper third level action.

In terms of the foregoing, it follows that the second level is essentially
threefold in nature. The quality check involves monitoring: the rate of con- _
vergence; monotonicitys; positive, negative and semi-definiteness; etc. The con-
vergence tests check for outright solution failure, and lastly, the nonlin-
earity tests ascertain the "degree" of nonlinearity excited.

In the third level, the foregoing information is used to trigger various
self-adaptive modifications of the IMNR iterative strateqy. Namely:

i) Global stiffness reformation;
ii) Preferential local reformation and;
iii) Load increment adjustment.

Such algorithmic adjustments form the heart of the third level of the overall
strategy.

INR FAMILY OF STRATEGIES

The overall family of INR strategies can essentially be established by
introducing increasingly severe restrictions to the straight methodology.
Specifically, starting with the virtual work theorem depicted by [1]

S GgT
R

the typical FE shape function formulation yields the following nonlinear large
deformation field equations [1]

Sdv=YF (1)

FB*1T S dv = F (2)
R 2 ~
where

Sel= l-(6u +Su, .+u, sSu, .+u, .Su, .) (3)
~ 72 1:j J)i Q’si 2'3\] 'Q'aJ Q/ai

T _

s=(S ,S ,S ,S ,S ,S ) (4)
~ 11 22 33 12 23 31
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such that g, S, Y and F are, respectively, the strain tensor in vector form,
the second Piola Kirchhoff pseudo stress tensor, the nodal displacement vector,

and lastly, the nodal force vector.

To solve (2), the Taylor expansion theorem can be used to establish the
following tangent stiffness formulation, namely

[K (Y]] 8Y] = aF; (5)

where AX% denotes the ith nodal displacement iterate associated with the zth
load increment. The nodal displacement, tangent stiffness and load imbalance

are defined by

(6)

k(Y5 )7 = (61T Toty, )I6T + Tox(y_)ITIoL (Y5 D IEe=(Y]_ )T ev (7

-1

L

IERN [B*(xf_l)]T o (Yi. ) dv (8)

~] =
such that Iy, [o(Y;_;) )] and F respectively denote the number of

iterations requ1red of k E %oad step, the initial stress matrix, the tangent
material stiffness and the total nodal load after 2 increments. For the strai-
ght INR approach [K ] is continuously reformed and inverted. This is obvious-
1y quite expensive. In this context, the following versions of the INR algori-
thm can be established for a spec1f1c Toad increment solution cycle, namely:

i) Straight INR with constant reformation of tangent stiffness matrix
during iteration;

) Intermittent global reformation during iteration;
) Preferential local reformation during iteration;

iv) BFGS type [3] reformation during iteration;
)

Classical modified INR procedure wherein stiffness is reformed only
at beginning of load step;

<

vi) No reformation, just iteration;
vii) Reformation with no iteration, etc.
As will be seen later, various versions of the foregoing INR family of al-

gorithm are incorporated in the self-adaptive strategy. This will obviously
lead to a hierarchy with varying degrees of computation power/efficiency.
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QUALITY/CONVERGENCE/NONLINEARITY TESTS

The quality/convergence/nonlinearity tests are the core of the multi-
level strategy. Such tests are themselves organized into three main cate-
gories, namely:

i) Classical norm type convergence tests;
ii) Quality of convergence tests and;
iii) Degree of nonlinearity tests.

The first group of tests are essentially of the normed type pass or fail vari-
ety as typified by:

a) The out of balance norm test;

L o351 71 oFf_ I <tor (9)
b) The global displacement norm test;

Yl 70 ¥E_ 1 < ton (10)

The main intent of such tests is essentially to monitor the success or failure
of the iterative process. Note, while such tests are efficient and well adap-
ted to this purpose, they cannot be used effectively to forecast potential
difficulties until outright failure occurs.

In this context, what is required are so-called quality checks which en-
able a constant monitoring of the solution so as to determine whether the direc-
tion of convergence is proper. This is the purpose of the second stage of
checking. Namely, the quality checks test whether the iterative process pos-
sesses the requisite: rate; monotonicity; positive, negative and semi definite-
nesss etc. Once determined, such information is used to trigger the various
modifications of the primative first level IMNR strategy.

Since the paper is mainly concerned with static loading problems, various
statements concerning the quality of solution convergence can be made at the
outset. For instance, since most static loading is applied in a monotone fash-
ion, it is expected that unless there is overshoot, successive iterated
solutions should behave as a monotone, positive, negative or semi definite se-
quence. Behavior to the contrary obviously represents either overshoot or po-
tential divergence.

Since it is difficult to ascertain the monotonicity and definiteness
from either of the normed or vectorial versions of the nodal displacements and
forces, alternative field measures must be employed. In this direction, the
local (element) and global strain energy stored can serve in such a capacity.
This follows from the fact that for monotone loading situations, successive
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iterations lead to a monotone positive definite sequence of energy iterates
for softening structure. In the case of hardening situations, successive ite-
rates may be nonmonotone for at least the first two iterates. Thereafter, the
energy iterates tend to be monotone and negative definite. This process is
cleag1% seen by the normed analogy of the iterative process depicted in Figures
1 an

The incremental iterate energy stored during a given iteration step is
essentially the shaded area illustrated in Figure 1. Realizing that the or-
dinate values of the true solution curve are given by (1), it follows that the
incremental energy stored during the kth iteration step of the 2th 1oad incre-
ment can be approximated by the following inner product, that is

L _ 1 2.0 T 2 1 244T 2
B = 2 (B ien ) B = 2 2 (BRI T s ) +

L T L T 2
|:B*(‘fk+]):I 3 (Xk+1)) .dv AXk+] (1)
Assuming that a total of K2 iteration steps are associated with the ch load-

step, then the following expression can be developed for the energy stored,
namely:

L 2
K™-1 K™-1
. L1 g, 0 T 2
E"= T E =% Z (F +F ) oY
k=] K 2= o~k <k Tk+1
k-1
=1 21T 5ey2 2 v 1Terv® vy Taoav?
) ?-kz] é ([B*(!k)] §(Xk) + [B*(Xk+1)] §(Xk+])) dVAXk+] (]2)

Note (12) is essentially a trapezoidal type integration aﬁproximation for
the area under the hyper-curve defining the solution of the 2t Joadstep. Now,
summing (12) over the entire set of L loadsteps associated with a given problem
yields the requisite overall strain energy stored, namely:
2
L K1
_ 1 2 '3 T L
Etotal = ?’251 k§1 (F * Ek+1) A (13)

To obtain the strain energies for say the eth element, (13) must be inter-
preted from a local point of view. Namely, the requisite partitions of Eke
and Axke must be employed in a partitioned version of (13), that is

g
L k%
€. =1 5 ¢ (fle

e e
= + F5.) AY (14)
total = 2 27 o7 - “k+1

~k+1

where here sze and Eﬁe, are respectively the local and element nodal displace-
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ments and forces. Note, due to the form of (14), any form of tangent stiffness
type of constitutive law can be accomodated.

In terms of the iteration process associated with softening media, it fol-
Tows that for convergent situations

2 2 2 2
E1 > E2 > > B > Epyq -.> 0 (15)

that is, successive iterates are monotone and positive definite. Hence, for
softening media, a check of successive iterates for monotone decreasing posi-
tive definiteness will establish a measure of the quality of convergence. For
the hardening case, the E& sequence associated with the convergent solution
process takes the form:

Ez < ER

2 2
X , <...< Ek < E

£
k41 - - - <O<E (16)
As can be seen, for k>1, the sequence E& is monotone increasing but negative
definite. In this context, similar to the softening case, a check of the mono-
tone increasing negative definiteness of successive iterates is used as one of
the measures of the quality of convergence.

A last but very important way of predicting potential solution difficul-
ties can be achieved by monitoring the degree of nonlinearity excited as the
deformation process continues. This can be achieved by selectively checking
the changes of curvature of the global and local strain energy space. Such
behavior can be ascertained using difference operators to evaluate either the
slope, rate of change of slope, or more elaborately, the radius of curvature of
the energy space as either a function of the loading parameter or the nodal
displacements. An alternative approach would be to locally spline fit the ene-
rgy-loading parameter space. In this way, the current curvature/slope can be
obtained either on a local element or global basis. Such information can be
used to initiate changes in load step size as well as to control Tocal and
global stiffness reformation.

The importance of such tests follows from the fact that although FE simu-
lations of structures composed of general media undergoing large deflections
are inherently nonlinear, the degree of nonlinearity excited varies from point
to point as well as from load increment to load increment. As it is possible
that large portions of the structure may exhibit basically linear behavior,
many general purpose codes allow the user to partition the overall structure
into its linear and nonlinear groups. Although this certainly adds to the ef-
ficiency of the code, generally such information is not known a priori unless
extensive parametric studies have already been performed. In this context, the
nonlinearity check will enable the automatic partitioning of the structure by
allowing for preferential reformation of the tangent stiffness depending on the
amount of local nonlinearity excited.
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ADAPTIVE STRATEGY

In the context of the inherent features of the INR family of algorithms,
the adaptive strategy incorporates the following procedural options namely:

i) Tangent stiffness reformation and;
ii) Load increment adjustment.

Each of these options in turn involves several different levels. For instance,
stiffness reformation can be considered in several stages, that is:

i} Global reformation;
ii) Preferential Tocal reformation or;
iii) BFGS [3] reformation.
The adaptive incremental Toad can also be achieved in several ways namely:
i) Increment expansion;
i1) Increment contraction or;
iii) Corrective incrementation.

As noted earlier, the initiation of either option is dependent on three basic
criteria, that is:

a) Quality of convergence;
b) Outright failure to converge or;
c) The degree of nonlinearity excited.

While the reformation option is triggered by the second Tevel tests, the
specific adaption triggered is primarily dependent on the degree of nonlinear-
ity excited. Hence, for mildly nonlinear (elastic) situations, the BFGS refor-
mation process is employed. In the case where significant Tocal or global non-
linearity is excited, then either global or preferential reformation is ini-
tiated.

As can be seen from the proceeding categories, various types of load in-
crementation are possible. The overall strategy is a combination of such
options. Specifically, when significant solution degradation is monitored by
the level two tests, then corrective incrementation is initiated. Namely, ne-
gative Toad incrementation is employed to enable the retracing of a portion of
load history wherein a lower order algorithmic strategy yielded poorly conver-
ged results.

To strike a balance between solution convergence and economy, the overall

122




adaptive strategy is centered about a primative version of the INR algorithm
namely the IMNR. Depending on the results of the quality/convergence/nonlinea-
rity tests, the level of the IMNR is either upgraded or lowered by modifying
the pattern of stiffness reformation and incrementation. Note, since the main
incentive is to achieve a successful solution at least cost, the hierarchy is
ordered to first implement increment adjustment and then reformation. As a
further move to achieve economy, the global reformation process typically em-
ployed at the start of an IMNR increment can be established preferentially de-
pending on the curvature tolerance associated with the global and local non-
Tinearity checks.

Since space is limited, a full description of the various detailed hier-
achies must be left to future publications. In this context, for the present
purposes, Figure 3 gives a good overview of all the possible flows of control
associated with the three-level strategy. As can be seen from this figure,
contingent upon the various "flags" generated in the level two tests, the con-
dition code check routine will initiate the actual modification of the INR
strategy along the 1ines outlined in the proceeding discussion.

DISCUSSION

Interestingly, while such factors as geometry, material properties,
boundary conditions, etc., all have some effect on the choice of l1oad incre-
ment size, once an excessive value has been chosen, typically similar types
of solution degradation are encountered when only the primative non-self-adap-
tive algorithm is used. Specifically, three basic types of solution pathology
tend to occur. These can be categorized by:

i} Immediate and strong nonmonotonicity;

ii) Moderate but progressively increasing nonmonotonicity and non-
positive definiteness and;

iii) Mild monotonicity with either very gradual increases or decreases
in solution oscillation.

Note, such behavior can be excited either in the first or successive load steps.
Figures 4 and 5 give examples of such behavior. While the results illustrated
pertain to a rubber sheet, similar results were obtained for elastic/plastic
media as well as for different geometries and boundary conditions.

The solution failure depicted in Figure 5 is typical of those that usually
arise. Specifically, as can be seen, for the given load increment excellent
convergence is obtained in the first step. In the second, a mild form of non-
monotonicity and nonpositive definiteness is encountered. Finally, in the
third step, strong and progressively increasing nonpositive definiteness is
encountered. Solution failure is finally initiated by out of balance loads.
This scenario is typical of excessive load incrementation. Note, as can be
seen from these results, the onset of such behavior is signalled by the ini-
tiation of nonmonotonicity or incorrect definiteness. By studying the behavior
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of local element energies, additional insights are obtained. For the problems
illustrated in Figures 4 and 5, the solution degradation is initially loca-
lized but gradually spreads to the entire structure as the iteration process
continues. Employing the self-adaptive strategy to the foregoing problems
caused the second level monotonicity tests to trigger automatic increment ad-
justment and preferential stiffness reformation. This Ted to the generation
of the correct solution. The overall strategy was tested on several nonlinear
problems which exhibited pathological behavior for given load increment choices.
The types of problems considered combined varying degrees of kinematic, kinetic
and material nonlinearity. In each case barring possible bifurcations, the
level two tests were able to automatically initiate the requisite corrective
self adaptions to enable successful solutions. The.main problem encountered
with the concept of self-adaptive strategies arises from the fact that some
engineering insight must be practiced in order to cut down overall running
times. Otherwise, excessive execution times are encountered as the adaptive
strategy shifts gears to adjust for improper incrementation.

REFERENCES

1. Zienkiewicz, 0. C., "The Finite Element Method", McGraw Hi1l Co. New York,
1978.

2. Chang, T. Y. and Padovan, J., "General Purpose Finite Element Programs,"
Structural Mechanics Software Series, Vol. III, Nicholas Parrone and
Walter D. Pilkey, eds., Univ. Press of Va., 1980.

3. Strang, G., "Numerical Computations in Nonlinear Mechanics", ASME Paper
No. 79-PVP-114.

124



FORCE NORM
! |

¢
\j

DISPLACEMENT NORM

Figure 1.- Iteration process for hardening problem.
FORCE NORM
—\rT
ch load
step

XXX
N

W
X
_'A
By

e —
DISPLACEMENT NORM

Figure 2.- Iteration process for softening problem.

125



START

> CONDITION CODE CHECK

-_— — —_——
|~ Y7 7 7 Z_")
PREFERENTIAL REFORMATION H .
/ / .
GLOBAL REFORMATION H» ‘\
I’ /

BFGS REFORMATION CONVERGENCE CHECK J
7
I/ //$ 4// D

STANDARD TNCREMENTATION

g ' QUALITY CHECK !
| CORRECTIVE INCREMENTATION A

L —7 NONLINEARITY CHECK

Figure 3.- Overall flow of control of three-level self-adaptive strategy.

4 LOAD INCREMENT

~ 49 Bs. OUT OF BALANCE
OUNTER

é 2000 LOAD ENCOUNTERED
xI

[

Z

’—.

=

b

&

[S]

=

. 1000+

|4

o

[1N]

=

[T}

g

8

—

[G)

< | ITERATION
I | +$
2 3 4

Figure 4.- Global energy increment of rubber sheet
(1st load step).

126



GLOBAL ENERGY INCREMENT (INCH-LBS.)

10 4

!
[
(o]

|

ﬁ" 1ST LoAD STEP
| .

OUT OF BALANCE
LOAD ENCOUNTERED

iy

f 3RD LOAD STEP

ZND LOAD STEP

>
|,|||||| 20 ITERATION

| l LOAD INCREMENT
| | 20 LBs.

Figure 5.- Global energy increment of rubber sheet

(1st, 2nd, 3rd load steps).

127






STUDY OF SOLUTION PROCEDURES FOR NONLINEAR
STRUCTURAL EQUATIONS

Cline T. Young II
Mechanical and Aerospace Engineering
Oklahoma State University

Rembert F. Jones, Jr.
David Taylor Naval Ship R & D Center

SUMMARY

A method for the reduction of the cost of solution of large nonlinear
structural equations was developed. Verification was made using the MARC-STRUC
structure finite element program with test cases involving single and multiple
degrees-of-freedom for static geometric nonlinearities. The method developed
was designed to exist within the envelope of accuracy and convergence charac-
teristic of the particular finite element methodology used.

INTRODUCTION

At present the finite element codes in conjunction with the large, high-
speed computers available are capable of producing reasonable solutions to
practically all static problems conceivable in structural analysis. In addi-
tion, well-behaved problems such as those involving small elastic deformations
are solved relatively inexpensively and accurately. Computational difficulties
do not arise until the stiffness of the structure becomes a function of dis-
placement and/or displacement history. An opinion widely held is that when
this does occur an implicit solution scheme is necessary for accuracy. All
implicit schemes require an iterative solution where there is an attempt to
reduce some error term to zero at each iteration. Therefore, a nonlinear
problem is more expensive to solve and can become astronomically so depending
upon the degree of nonlinearity and the convergence criteria used.

In the solution of nonlinear structural equations the reformulation of
the stiffness matrix is a first order contribution to the cost. The first
logical step in attempting to reduce the cost would be to seek a less expen-
sive way to update the stiffness matrix. This of course has been done with
some success and is apparently still being researched. Looking at only the
most recent developments or evaluations we see that Mondkar and Powell [1]
have used the constant alpha technique to try updating the stiffness matrix
for the modified Newton-Raphson approach. Matthies and Strang [2,3]
have taken similar approaches born from a paper by Dennis and Moré [4] on
Quasi-Newton methods. The basic premise was that the stiffness matrix could
be updated without going through the full process of reformulation and de-
composition or inversion. The most popular approach was to update the stiff-
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ness matrix by a matrix of rank two. This is known as the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) update. Crisfield [5] used a method similar to a
BFGS update of rank one. All of these papers show conclusive evidence of cost
reduction for certain problems. The last by Crisfield is closest in form to

the method developed here.

A second logical step is to reduce the number of iteratioms required to
satisfy the convergence criteria. This can be done by determining an estimated
displacement as accurately as possible. The development which follows shows
how to do this. All forces and loads are of an incremental nature.

DEVELOPMENT

In general, the iterative methods of solution using the stiffness formula-
tion will by some logical means calculate a generalized displacement for a
given generalized load. Returning then to the elemental level, the elemental
stiffness matrices are altered to reflect this change in shape and the total
resistance of the structure to the applied load is determined. If the struc-
ture is to be considered in equilibrium, the applied load must be exactly
balanced by the resulting resistance of the structure. Any imbalance is termed
a residual force and must be considered as an error. An attempt is made to
reduce this error by altering the estimated displacement. The rate of conver-
gence depends on the manner of estimated displacement selection.

The vast majority of implicit schemes available utilize only the most
recent residual and thereby ignore any possible trend determination. Felippa
[6] recognized this and proposed a viable method for determining the displace-
ment that would yield the least residual within specified limitations. This
approach required the determination of a weighting matrix that was dependent
upon the elements chosen and the applied loads. The development in this paper
is independent of the physical characteristics of the elements.

A key element in the success of the approach developed is the finite
element method used. As mentioned before the MARC-STRUC structure program was
used but the variational formulation of the structural equations was performed
according to the method of Jones [7]}. It is most important to have the most
accurate method possible for the determination of the residuals.

Considering the solution form, in Figure 1 a graph of force versus dis-
placement is shown. The curve represents the calculated resistance of the
structure. The original stiffness matrix, Ko, assumes linearly elastic defor-
mation_and yields the displacement, ug, and the residual, Ry, for the applied
load, F. The displacement, u,, and residual, R are then used in a Quasi- _
Newton fashion to update the stiffness matrix to Kl and a new displacement, uq,
and consequently a new residual, Rl, are calculated. Highly accurate answers
may result, but they are clearly expensive to obtain.

The extrapolation method presented in this paper is clearly exemplified
by the triangle, ACE, shown in Figure 2. The method used was identical to the
direct iteration method (shown in Figure 1 earlier) up to and through the
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calculation of Go, ﬁQ and Gl’ il' It was the determination of the new esti-
mated displacement, EZ’ that was performed differently. 1In_a one dimensional
sense the residuals R, R; and the distance between them, d, were used to
calculate a scalar, w, that predicted the displacement at which equilibrium
supposedly existed under the load, F. Of course, this was not the equilibrium
position and a new residual,_ﬁz,_was determined. The residuals, Rj, Ry, and
the distance between them, wd - d, were then used to predict a new equilibrium
position. The process continued until convergence was satisfied.

A major difficulty encountered was the determination of the scalar, w.
In a one dimensional case it was easy enough to see that
Ro
w = —=—"—--""" (l)
Ro = Ry

However, since in general the vectors Ry, ﬁl and d are heterogeneous in their
components' units, a division as mentioned above is impossible even when using
vector lengths. The solution to this difficulty came about by considering the
units of work. 1In fact, this extrapolation process may be symbolically thought
of as minimizing the work done by the residuals. In this light it was then
decided that equating the area of the trapezoid, ABDE, plus the area of the
triangle, BCD, to the area of the triangle, ACE, would result in an equation
with only one unknown. Simplifying and rearranging, the following was
obtained.
R, * d
w = ° - (2)
(Ro-Ry) =+ d

At this point it was decided to implement the theory and test for a one degree-
of-freedom case and follow that with a more complex case.

VERIFICATION

In an attempt to determine the validity of the aforementioned extrapola-~
tion method it was determined that a one dimensional buckling problem would be
appropriate as a first test case. The bar-spring problem of Jones was
selected.

Bar-Spring Problem

In Figure 3 the dimensions used on the problem may clearly be seen. The
length of the spring was unimportant as long as nonlinear effects did not enter
the calculations for the spring's deflection. The bar was modeled so as to
allow only a change in length and no bending deformation, hence the absence of
an EI term. A load was applied at the end of the bar and spring in the direc-
tion of deformation to render the problem one of a purely single dimensional
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case. The buckling load was at 2.7 kg. (6 1b.) with the results tabularized
in Table I. The exact deformation was calculated and plotted in Figure 4 to
show the high degree of nonlinearity of the problem.

In analyzing the results (see Table I) it was decided that a comparison of
the values calculated against the exact values as well as a comparison of the
number of iterations required for each method would be of use. The raised
numbers beside the calculated displacements in Table I represent the number of
iterations required above the original estimate to reduce the quotient of the
calculated displacement and the estimated displacement to the tolerance indi-
cated at the column heading.

It should be noted that at the buckling load the tolerance required to
obtain two significant digits accuracy, 1.001, led to a 5 vs. 26 advantage in
iterations for the new method. However, the new method was edged by the old
in the post-buckled region by a consistent 4 vs. 7 margin. The reason for this
was apparently that the linear extrapolation did not follow the changing stiff-
ness of the structure very well. If so, a better approximation would be
obtained with a parabolic extrapolation.

On the whole this extrapolation showed promise in this case but not of a
clearly decisive nature. Therefore, the motivation for a more complex example
was established.

Ring Buckling Problem

This problem was to determine the deflection of a ring under a uniformly
loaded external pressure of varying values. The ring was modeled through 90
degrees as shown in Figure 5. The 90 degree arch was broken into two substruc-
ture. The degrees of freedom per node were

1. 2
2. R
3. dz/ds
4. dR/ds

with the rotations positive as shown by O in Figure 5. The ring was modeled
with a modulus of elasticity of 2.1 x 106 kg/cm?2 (30 x 106 psi) and a radius
of 51 em (20 in.). Finally, a kicker force was applied at node 1 of substruc-
ture 1 in the negative R direction with a magnitude of 1.5 x 1076 kg. (3.4 x
10-6 1b). Obviously, this was simply to force the ring into a buckled mode
without altering the deflections due to the pressure loading.

As there was no exact solution other than the known collapse load, the
tolerance chosen, 1.001, was that which gave two significant digits accuracy
for the bar-spring problem. The results obtained are shown in Table II. The
point at which the structure would "collapse" was 4.22 kg/cm? (60 psi). As can
be seen, the results were quite remarkable as the structure became softer. At
4.18 kg/cm2 (59.5 psi) the number of iterations reached by the old method were
not enough yet to satisfy the tolerance requirement of 1.001l. The authors
suspect that another 50 to 100 iterations would have been required.
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CONCLUDING REMARKS

The problem discussed in this paper was the cost of solution of large
nonlinear structural equations. This difficulty has been and is being
researched; however, the direction of most present research is apparently con-
cerned with the second partial of the strain energy expression (stiffness
matrix). This paper implies and subsequent research by the authors supports
the supposition that the first partial of the strain energy expression (resist-
ing force) is not being fully utilized in the determination of the new esti-
mated displacement needed for implicit methods. It may well be determined that
updating and/or reformulation of the stiffness matrix is occurring far too
often in present solution techniques.
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TABLE 1

BAR-SPRING PROBLEM

Load

kg Exact

(Ib)  Method (cm) 1.1 1.01 1.001 1.0001 1.00001
1.4 0ld 0.59781  0.59151 0.5964§ 0.59782 0.59782 0.5978;
(3.0 New 0.5915 0.5964 0.5978 0.5978 0.5978
2.7 01d 2.5400 2.01773 2.454523 2.5320§6 2.539229 2.540021
(6.0) New 2.2329 2.5018 2.5373 2.5400 2.5400
4.1 01d 4.4821 4.49331 4.48061 4.4821} 4.48211 4.4821%
(9.0)  New 4.4788 4.4816 4.4821 4.4821 4.4821°
5.4 01d 5.0800 5.0792§ s.osoog 5.0800? 5.08002 5.08003
(12.0)  New 5.0828 5.0803 5.0800 5.0800 5.0800
6.8 0ld 5.4907 5.4943} 5.49072 5.4907? 5.49078 5'49°7§o
(15.0)  New 5.4948 5.4910 5. 4907 5.4907 5.4907
8.2 01d 5.8143 5.8176i 5.81463 5.8143? 5.81438 5.814311
(18.0)  New 5.8176 5.8148 5.8146 5.8143 5.8143

#Buckling Load

Note: When the number of iterations is less than (2), there is NO difference between the new
and old methods.
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TABLE TII

RING PROBLEM (1.001)

Load Substructure 1 (cm) Substructure 2 (cm)
kg/cm2 Node 1 Node 1
(psi) Method Tterations D.0.F. 2 D.0.F. 2
) 01d 2 -.78547 E-03 -.41397 E-03
(7 New 4 -.78555 E-03 -.41397 E-03
1.5 01d 5 -.25537 E-02 -.10468 E-02
(21) New 4 -.25545 E-02 -.10459 E-02
2.5 01d 9 -.49439 E-02 -.10607 E-02
(35) New 4 -.49472 E-02 -.10576 E-02
3.5 01d 23 -.10230 E-01 .18172 E-02
(49) New 3 -.10237 E-01 .18243 E-G2
3.9 01d 54 -.22451 E-01 .12827 E-01
(56) New 3 -.22597 E-01 .12972 E-01
4.2 01d 149% -.88354 E-0Q1% .77978 E-01%
(59.5) New 4 -.95669 E-01 .85268 E-01

*Maximum number of iterations allowed.
Convergence not yet satisfied.
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Kg =1.07 kg/cm §
(6 Ib/in.)
N 254 cm
(100 in.)
Figure 3.- Bar-spring problem.
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Figure 5.- Ring problem.
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RESPONSE OF NONLINEAR PANELS TO RANDOM LOADS*

Chuh Mei
01d Dominion University

SUMMARY

Lightweight aircraft structures exposed to a high intensity noise environ-
ment can fatigue fail prematurely if adeqguate consideration is not given to the
problem. Design methods and design criteria for sonic fatigue prevention have
been developed based on analytical and experimental techniques. Most of the
analytical work was based upon small deflection or linear structural theory
which did not agree with the experimental results. A large deflection geomet-
rical nonlinearity was incorporated into the analysis methods for determining
the structural response to high intensity noise. The Karman-Herrmann large
deflection equations with a single-mode Galerkin approximation, and the method
of equivalent linearization were used to predict mean-square amplitude, mean-
square stresses, and nonlinear frequency at various acoustic loadings for
rectangular panels. Both simply supported and clamped support conditions with
immovable or movable inplane edges are considered. Comparisons with experimen-
tal results are presented.

INTRODUCTION

Vibrations caused by acoustic pressure can frequently disturb the operating
conditions of various instruments and systems, and sonic fatigue failures which
occurred in aircraft structural components cause large maintenance and inspec-
tion burdens. The development of sonic fatigue data and design techniques were
initiated to prevent sonic fatigue failures. Design methods and design criteria
for many types of aircraft structures have been developed under Air Force
sponsorship and by the industry in the past twenty vears. Reference 1 has a
complete list of the reports describing these efforts. This research led to
sonic fatigue design criteria and design charts which are widely used during
the design of an aircraft. Although current analytical sonic fatigue design
methods are essentially based on small deflection or linear structural theory
(see ref. 1, page 209), many documented tests (refs. 2 - 6) on various aircraft
panels have indicated that high noise levels in excess of 110 decibels (dB)
produce nonlinear behavior with large amplitudes of one to two times the

*This work was supported by the Air Force Office of Scientific Research (AFSC),
United States Air Force, under contract F49620-79~C00169.
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panel thickness in such structural panels. The neglect of such large dJdeflec-
tion geometrical nonlinearity in analysis and design formulations has been
identified as one of the major causes for poor agreement between experimental
data and analytical results. The evidence of those researchers was summarized
in reference 7, where a comprehensive review of existing analytical methods on
random excitations of nonlinear systems was also given.

In this paper, the Karman-Herrmann large deflection equations for rectan-
gular plates (ref. 8) are employed. Using a single-mode Galerkin's approxima-
tion, the dynamic equations reduce to a nonlinear differential equation with
time as the independent variable. The method of equivalent linearization
(refs. 9 - 11) is then applied to reduce the nonlinear equation to an equivalent
linear one. Mean-square displacements, mean-square stresses, and nonlinear
frequencies at various acoustic loadings are obtained for rectangular panels of
different aspect ratios and damping factors. Both simply supported and clamped
boundary conditions with immovable or movable inplane edges are considered.
Comparisons with experimental results are also presented.

SYMBOLS
a,b Panel length and width
A,B Panel dimension parameters, 2m/a and 27/b
C1,Co Constants
D Bending rigidity
err Error of linearization

Young's modulus
Equivalent linear frequency in Hz
Stress function
Panel thickness
Frequency response function
Spectrum level
Mass coefficient
Membrane stress resultant
Constant
Pressure loading
Generalized or modal displacement
Aspect ratio, a/b
(W) Spectral density function of excitation pressure p(t)
Time
'V Displacement of midplane
Transverse deflection
' V2 Coordinates
Nonlinearity coefficient
* Nondimensional nonlinearity coefficient
Ratio of damping to critical damping
Nondimensional frequency parameter
Poisson's ratio
Panel mass density
Normal and shear stresses

(R=J= I M= L B
€

QU > Y £ cdhyaalg 2

~
A
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® Radian frequency

Q Equivalent linear or nonlinear radian frequency
Subscripts:

b Bending

c Complementary solution or critical

m Membrane

max Maximum

o] Linear

P Particular solution

FORMULATION AND SOLUTION PROCEDURE

Governing Equations

Assuming that the effect of both the inplane and rotatory inertia forces
can be neglected, the dynamic von Karman equations of a rectangular isotropic
plate undergoing moderately large deflections are (refs. 8, 12):

L(w,F) = DV4w + phw, . =~ h (F, + F

2% W g rx¥ W'yy

- L) - = 1
2F’xy w Xy) p(t) 0 (1)

4 _ 2 -
VF = E (w "xy Wik w'yy) (2)

where w is the transverse deflection of the plate, h is the panel thickness, P
is the mass density of the panel material, D = FEh3/12(1-v2) is the flexural
rigidity, E is Young's modulus, Vv is Poisson's ratio, p(t) is the exciting
pressure, and a comma preceding a subscript(s) indicates partial differentia-
tion (s). The stress function F is defined by

o =F,
X vy
o =F, (3)
y XX
T = -F,
Xy Xy
where O, Oy, and Txy are membrane stresses.

Simply Supported Panels. For a rectangular plate simply supported along
all four edges as shown in Figure 1, Chu and Herrmann (ref. 8), and Lin (ref.
13) have considered that if the fundamental mode is predominant, the motion of
the panel can be represented adequately as

w = g(t) h cos (Tx/a) cos (my/b) (4)

where g(t) is a function of time only. The maximum value of q(t) coincides with
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the maximum deflection wyy, divided by panei thickness h. The expression w
satisfies the boundary conditions for simple supports

= + — +
A w,xx A% w,yy 0, on x a/2

(5)

w + b/2

Il

. + -
w,yy v w,xx 0, ony

Substituting the expression for w in Egq. (2) and solving for a particular
solution Fp yields

) (6)

where r = a/b. The complementary solution to equation (2) is taken in the form

— 2 — 2
F =N L +8 % (7)
c X 2 y 2
where the constants ﬁ% and ﬁ? contribute to the membrane stresses Oy and Oy and
are to be determined from the inplane boundary, immovable or movable,
conditions.

For the immovable edges case, the conditions of zero inplane normal dis-
placement at all four edges are satisfied in an averaged manner as

+* a/2

ou 1 _ 2
JJ s;-dxdy JJEE (F,yy - vF,xx) L w 'x] dxdy, on x

Il
14

j[ g% dydx = ff[%—(F, -VF, ) - % w2,y] dydx, on y b/2 (8)

XX Yy

where u and v are inplane displacements. For the movable edges case, the edges
are free to move as a rigid body with the average inplane stress equal to =zero.
The inplane boundary conditions are

Jb/Z
N = h F, dy = 0\, on x =1 a/2
u = constant (9)
a/2
N =nh J F, dx = 0}, ony = % b/2
Yy -a/2 Yy

v = constant

where Ny and Ny are membrane stress resultants per unit length in plate. By
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making use of these inplane edge boundary conditions, eguations (8) and (9), it
easily can be shown that for the immovable edges

— 212572
N = 9°h7ETE (1 + vr2)

8a2 (1-v2)

_ q2h2ETT2
Y 8a2(1-v2)

z]
[

(2 + V) (10)

and for the movable edges

N =N =0 (11)
X '

the complete stress function is then given by F = Fp + FC.
With the assumed w given by equation (4) and stress function given by
equations (6) and (7), equation (1) is satisfied by applying Galerkin's method
a/2 b/2
J J L(w,F) w dxdy = 0 (12)

~a/2 -b/2

from which yields the modal equation of the form

. 2 3 _ p(t)
q + w, q + Bg® = - (13)
and
w§=9\2 D4,>\§=n4 (1+i)2
phb r2
m = T2ph%/16 (14)
B=8_ +8 = (B +8) —=2
== + = +
o) c P c phb4
with
* 3W4 4 2
B == (L +r)1 - v
p 4
*
g = gﬂ;-(l + 2url + d
c 4
2r

where w, is linear radian frequency, m is mass coefficient, and B is nonlinear-
ity coefficient. The linear frequency Ay, nonlinearity coefficients Bp and
Bz, and aspect ratio r are all nondimensional parameters.
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Clamped Panels. Yamaki (ref. 14) considered the predominant mode

w = g—(-z)—h (1 + cos zgl) (1 + cos 2—12!) (15)

which satisfies the clamped support conditions

w=w,_=0, on X * a/2

x
(16)

I

w = w,y = 0, on y * b/2
By introducing equation (15) in equation (2) and solving it, the particular

stress function is

2
F = - —}—qzthr [cos ax + L cos By + L cos 2Ax

p 32 4 16

2 1
+ m—z cos Ax cos By + l6r4 cos 2 By

1 1
+ TZ—:—;ZTZ cos2Ax cos By + (1 ¥+ 4c9) cos AxX cos 2 By] (17)

where A = 2T/a and B = 27M/b., The complementary stress function is assumed as
the form appearing in equation (7). Upon enforcing the inplane edge conditions,
equations (8) and (9), it can be shown that for the immovable edges
_ 2,22
32 a?(1-v°)
2y 2 2
= 3g“h“ET
Ny = L 22 (r2 + V) (18)
32 a2 (1-v?)

and for the movable edges

N, = Ny = 0 (19)

the complete stress function is given by F = Fp + Fc. Introducing these ex-
pressions for w and F in equation (1) and applying Galerkin's procedure yields

the equation

p(t)
- (13)

. 2
q + wo q + Bq3 =
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where

4 .
mi = Kz [)4, Xi = 16ﬂ4 (3 + 2r2 + 3rd)
phb Or
m = 9 ph?/16 (20)
* * D
B=B_+B8.= (B, +B)
C
P P c phb4
and
* 4
B =31r4 (1-v?) [1+—lz+li6+ 2 > * 14
P r (1 + %) 16r
N - 22 - >3 (21)
2(4 + r) 2(1 + 4r")
4
*
B = 37 (1 + 2\)r2 + r4)
c 4
2r

Equation (13) represents the undamped, large-amplitude vibration of a rectan-
gular panel with simply supported or damped edges.

The methods commonly used for determining the damping coefficient are the
bandwidth method in which half-power widths are measured at modal resonances,
and the decay rate method in which the logarithmic decrement of decaying modal
response traces is measured. The values of damping ratio 7 range from
0.005 to 0.05 for the common type of panel construction used in aircraft
structures. Once the damping coefficient is determined from experiments or
from existing data of similar construction, the modal equation, equation (13),
now reads

" ) 2 3 _plt) (22)
q+2cwoq+woq+8q =7

The method of equivalent linearization is then employed to determine an
approximate root-mean-square (RMS) displacement from equation (22).
Method of Equivalent Linearization
The basic idea of the equivalent linearization (refs, 9 - 11) is to re-

place the original nonlinear equation, egquation (22), with an equation of the
form

p(t)
m

q + 2§woé + qu + err (q) =

(23)
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where 2 is an equivalent linear or nonlinear frequency, and err is the error
of linearization. An equivalent linear equation is obtained by omitting this
error term, then equation (23) is linear and it can be readily solved. The
error of linearization is

err = (wg - 9% q+ B (24)

which is the difference between equation (22) and equation (23). The smaller
that the error is, the smaller the error in neglecting it, and the better
approximate solution to equation (22) will be obtained. To this end, the
equivalent linear frequency square Q2 in the linearized equation is chosen in
such a way that the mean-square error err? is minimized, that is

B(errz)
3 (©2) =0 (25)

If the acoustic pressure excitation p(t) is stationary Gaussian and ergodic,
then the response g computed from the linearized equation, equation (23), must
also be Gaussian. Substituting equation (24) into equation (25) yields (refs.
9, 13)

0= o? 4 3B 26)

where g2 is the maximum mean-square deflection of the panel. Dividing both
sides of equation (26) by D/phb4 yields

A% = Ag + 3B*q2 (27)

2, . . . . .
where A° is a nondimensional equivalent linear or nonlinear frequency
parameter,

An approximate solution of equation (23) is obtained by dropping the error
term; the mean-square response of amplitude is

q° = fm s(w) [H(@ | av (28)
O

where S(w) is the spectral density function of the excitation pressure p(t),
and the frequency response function H(w) is given by

H(w) = = (29)

m(Q2 - wz + 2i;wow)

For lightly damped (T < 0.05) structures, the response curves will be highly
peaked at . The integration of equation (28) can be greatly simplified if the
forcing spectral density function S(®w) can be considered to be constant in the
frequency band surrounding the nonlinear resonance peak ), so that
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2 _ms()

(30)
4m2EwOQZ

Q

In practice, the spectral density function is generally given in terms of the
frequency f in Hertz. To convert the previous result one must substitute

Il

Q 2mf (31)

I

and S (§2) sS(f)/2m

into equation (30); the mean-square peak deflection is simply

32 Sf
5 ! for simply supported panels
2- AN (32)
[ 32 Sf
> ’ for clamped panels
SIQAOX

The pressure spectral density function S(f)/2m has the units (Pa)2/Hz or (_psi)2
/Hz, and S¢ is a nondimensional forcing excitation spectral density parameter
defined as '

s = S(£) (33)

£ p2h4(D/phb4)3/2

The linear frequency parameters XO in equations (32) are given in equation (14)
and equation (20) for simply supported and clamped panels, respectively, and
the equivalent fregquency parameters A2 can be determined through equation (27).

Solution Procedure

The mean-square response q2 in equation (30) (or equation 32) is determined
at the equivalent linear frequency ) (or A) which is in turn related to gZ
through equation (26) (or equation 27). To determine the mean-square deflec~-
tion, an iterative procedure is introduced. One can estimate the initial mean-
square deflection qg using linear frequency ws through equation (30) as

2 TS (wp)

o 4m2Cwo3

This initial estimate of.Eg is simply the mean-~square response based on linear
theory. This initial estimate of gZ can now be used to obtain refined estimate
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of §2 through equation (26), Qf = w2 + 3B q2, then q2 is obtained through
%. . o o 1
equation (30) as

2 mS(R1)
N e a? 9)
o1

As the iterative process converges on the n-th cycle, the relation

) 7S (§4,) -
94, T T3 2 = qr21 -1 (36)
4m QmOQ n

becomes satisfied. In the numerical results presented in the following section,
convergence is considered achieved whenever the difference of the RMS displace-

ments satisfied the relation

n-l < 1073 (37)

Stress Response

Once the RMS displacement is determined, the bending stresses on the sur-
face of the panel can be determined from

6D
= ea e— +
%xb h2 (w'xx vw'yy)
(38)
6D
= e ce— +
Oyb h2 (w,yy Vw,xx)

From equations (3) and (38), and using equations (4), (6), (7) and (10), the
expressions for the nondimensional stresses on the surface of a simply supported
panel with immovable edges are given by

0. b 2 2
X b T 1 X Y
( ) = [ > ( V)cos cos 5 1 g

Eh Eh2 2(1-v7) «

ﬂz(l + Vr2) 2
PN

ﬂ2 2 2
+ (——5-cos —EXOQ + [ >
8r 8r (1~-v7)
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ob 2 2
Y 7 = (o + 0 ) b2 = [ Ll 5 1+ l%ﬁ cos %?—cos %?ﬂ q
Eh yo o oym g, 2 (1-v°) e

i1 27X 2 1r2 (r2+\)) 2
+ (7;-cos —;—0 qg + P—jf———jfﬂ q
8r (1-v )

(39)

For movable inplane edges, the last term in equation (39) vanishes. Simi-

larly, from equations (3) and (38), and using equations (7), (15), (17), and
{(18), the expressions for the nondimensional tensile stresses on the surface
of a clamped panel with immovable edges are

oxb 1r2

> 5 [jL-cos Ax(l+cos By) + v(l+cos Ax) cos By] g
Eh 2(1-v') r

ﬁ2r2 1 2 1
[ cos By + ———=— cos AX cos By + — cos 2By
8 4 2.2 4
r (1+x ) 4r
1 4 2
+ ———5—5—-cos 2Ax cos By + ———— cos Ax cos 2Bylg
@+r) (1+4r™)

3ﬂ2(l+Vr2) 2

+ [ 1 g (40)
2
32r2(l—v )
o b2 1T2 v
y2 = [ (1+4cos Ax) cos By + —5 cos Ax(l+cos By)l g
Eh 2(-v ) r
ﬂz 1 2
+ — [cos Ax + — cos 2AX + ——5—5 COs AX cos By
8 4 2.2
(1+xr)
4 2
+ ——5 5 cos 2Ax cos By + 5 5 COS Ax cos 2By] g
(4+xr ) (1+4r )
3n2(r2+v) 2
ML PR
32r  (1-v))

where A = 27/a and B = 27T/b. For movable edges, the last term in equation (40)
vanishes.
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Examining equations (39) and (40), a general expression is obtained for
the stress at any point in the structure as.

2
o= Clq + C2q (41)

where C, and C, are constants. The constants can be determined from material
properties, dimensions of the panel, and the location and direction at which
the stress is to be measured. The mean-square stress is then related to the
mean-square modal amplitude in a general expression as

2 2 2 2 2.2
o=clq +3c2(q) (42)

2
Once the mean-square deflection q is determined, equations (36) and (37), the
mean-square stress can then be obtained from equation (42).

RESULTS AND DISCUSSION

Because of the complications in analysis of the many coupled modes, only
one-mode approximation is used in the formulation. The assumption for funda-
mental mode predominacy is admittedly overly simplified; the conditions under
which this is a valid approximation remain to be investigated. However, a
simple model sometimes helps to give basic understanding of the problem.

Using the present formulation, response of nonlinear rectangular panels
with all edges simply supported and all edges clamped subjected to broadband
random acoustic excitation are studied. Both immovable and movable inplane
edges are considered. In the results presented, the spectral density function
of the excitation pressure S(f) is considered flat within a certain region
near the equivalent linear frequency f and a value of Poisson's ratio of 0.3
is used in all computations, unless otherwise mentioned. Mean-square ampli-
tudes and mean-square nondimensional stresses for panels of various aspect
ratios and damping ratios are determined and presented in graphical form.

These graphs can be used as guides for preliminary design of aircraft panels.
The maximum mean-square deflection can be reasonably obtained from these
figures; however, multiple modes had to be considered for accurate determina-
tion of mean-square stresses. This has been demonstrated by Seide in

reference 15 for a simple beam subjected to uniform pressure excitation and in
reference 16 for large deflections of prestressed simply supported rectangular
plates under static uniform pressure. Comparison with experiment is also given.
It is demonstrated that the present formulation gives remarkable improvement in
predicating RMS responses as compared with using the linear theory.

Analytical Results
Figure 2 shows the maximum mean-square nondimensional deflection versus
nondimensional spectral density parameter of acoustic pressure excitation for

rectangular panels of aspect ratios r = 1, 2, and 4, and a damping ratio 0.02.
It is clear from the figure that an increase of r will "close" the curve.
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This occurs because as r increases, the panel becomes less stiff, and the
mean-square deflection has to be finite. It can also be seen from the figure
that the mean-square deflection of the movable inplane edges case is approxi-
mately twice as that of the immovable edges.

The maximum mean-square nondimensional stress (bending plus membrane
stress, at the center of the panel and in the y-direction) is given in Figure
3 as a function of excitation spectral density parameter for simply supported
rectangular panels of various aspect ratios and a damping factor 0.02.
Results showed that the difference of maximum mean-square stresses between
immovable and movable edges is small as compared with the difference of mean-
square deflections between the two edge conditions.

Figure 4 shows the mean-square deflection versus forcing spectral density
parameter for simply supported square panels of different damping ratios. The
corresponding maximum mean-square stress (bending plus membrane stress, at the
center of panel) is shown in Figure 5. As it can be seen from the figure that
the precise determination of damping ratio from experiment is important, e.g.,
stress increases by 25-30 percent as { is decreased from 0.015 to 0.0l (for
Sf between 5000 to 20000).

Plots of the equivalent linear or nonlinear frequency parameter Az
versus mean-square modal amplitude for simply supported rectangular panels of
aspect ratios r = 1, 2, and 4 are shown in Figure 6. The lowest value of A
corresponds to the linear case.

In Figure 7, the mean-square deflection is given as a function of excita-
tion spectral density parameter for rectangular panels of aspect ratios
r=1, 2, and 4 and a damping ratio 0.02. The maximum mean-square deflection
of the clamped panels is somewhat much less than that of the simply supported.
The corresponding maximum mean-sguare nondimensional stress (bending plus
membrane stress, in the y-~direction and at the center of the long edge) versus
spectral density parameter is shown in Figure 8.

Figure 9 shows the mean-square modal amplitude versus spectral density
parameter of excitation for a square panel of different damping ratios. 1In
Figure 10, the equivalent linear frequency parameter is given as a function
of mean-square deflection for clamped rectangular panels of aspect ratios
r =1, 2, and 4.

Comparison with Experimental Results

The experimental measurements on skin-stringer panels exposed to random
pressure loads reported in references 3 and 4 are used to demonstrate the
improvement in predicting panel responses by using the present formulation.
The structure was a skin-stringer, 3-bay panel as shown in Figure 11l. The
panels were constructed of 7075-T6 aluminum alloy. Details of the test
facility, noise sources, test fixture, and test results are given in
reference 3. The important properties of the panel are
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Length a = 68.58 cm (27 in.)

width between the rivet lines b = 16.84 cm (6.63 in.)

Thickness h = 0.81 mm (0.032 in.)

Damping ratio z = 0.0227

Poisson's ratio vV = 0.33

Young's modulus E = 66.19xlo3 MPa (9.6x106 psi)
Weight density p = 7.164 kg/m3 (0.1 1b/in.>)

The tests were conducted with an overall sound pressure level (SPL) of 157 4B,
with a range of + 1.5 dB which corresponds to an average spectrum level of
125.26 dB (see Table IV of ref. 3 or Table 8 of ref. 17). The central bay of
the 3-bay test panels is simulated by a flat rectangular plate. The linear
frequencies for both simply supported (equation (14)) and clamped (equation
(20)) support conditions are calculated and shown in Table 1. Test measure-
ments and finite element solution are also given for comparison. Table 1 also
shows the equivalent linear or nonlinear frequencies at overall SPL 157 dB.

Table 1. Frequency Comparison

Natural Equivalent linear
frequency fO frequency f157

Simply supported - Immovable edges 71 321
- Movable edges 71 240

Clamped - Immovable edges 159 311
- Movable edges 159 264

Finite element (ref. 4) 155 N/A
Experiment (ref. 3) 126, 129 N/A

Frequency at high intensity noise level was not reported in reference 3. From
the results shown in Table 1, it is clear that the central bay of the test
panels did not respond to the acoustic excitation as though it were fully
clamped on all four edges. This was also demonstrated in Figures 12 and 17 of
reference 3 in the sense that the highest measured RMS strains did not occur
at the center of the long edges. The central bay of the test panels actually
behaved somewhat between fully simply supported and fully clamped support
conditions.

The acoustic pressure spectral density S(f) is related to the spectrum
level L as
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lo(L/lO - 18)

8.41 x (psi)Z/Hz

s(f) = (47)

lO(L/10 - 8 (dynes/cmz)z/Hz

4 x
A spatially uniform white noise pressure loading with spectral density of
S(f) = 2.824 x lO'5 (psi)z/Hz (or nondimensional spectral density parameter
S. = 5100), which corresponds to an average spectrum level L = 125.26 dB, is
used in the computations. The RMS stresses (equation (42)) at the center of
the long edges for simply supported (equation (39)) and clamped (equation (40))
boundary conditions are calculated and given in Table 2.

Table 2. Stress Comparison

(RMS stress, kpsi at overall SPL 157 dB)

52 oz
X Y
Linear Nonlinear Linear Nonlinear
Theory Theory Theory Theory
Simply-Supported 0.0 0.58(Im.) 0.0 3.28(Im.)
0.17 (Movable) 2.74 (Movable)
Clamped 2.17 1.12 (Im.) 6.57 3.84 (Im.)
1.32 (Movable) 4.24 (Movable)
Finite Element (ref. 4) 2.4 NA 7.7 NA
Experiment (refs. 3, 4)
Panel A 0.63 2.2
Panel B 0.94 2.9
Panel C 0.78 2.5
Panel D 1.1 ' =
Panel E 0.84 2.2
Average A-E 0.87 2.5

Table 3 shows the RMS deflections using the present formulation. The
measured and finite element RMS stresses and RMS deflections in reference 4
are also given in the tables for comparison. It demonstrates that a better
correlation between theory and experiment can be achieved when large deflec-
tion geometrical nonlinearity effect is included in the formulation.
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Table 3. Deflection Comparison

2
h
(wm ax/ )
Linear Theory Nonlinear Theory
Simply Supported 8.0 1.8 (Immovable)
2.4 (Movable)
Clamped 2.7 ' 1.4 (Immovable)
1.6 (Movable)
Finite Element (ref. 4) 3.1 NA
Measured (refs. 3, 4) - 2.0

CONCLUDING REMARKS

An analytical method for predicating response of rectangular nonlinear
structural panels subjected to broadband random acoustic excitation is pre-
sented. The formulation is based on the Karman-Herrmann large deflection
plate equations, a single-mode Galerkin approximation, the equivalent linear-
ization method, and an iterative procedure. Both simply supported and clamped
support conditions with immovable or movable inplane edges are considered.
Panel mean-square deflection, maximum mean-square stress, and equivalent linear
frequency at given excitation pressure spectral density can be determined, and
they are presented in graphical form. These graphs can be used as guides for
preliminary design of aircraft panels under high noise environment. Results
obtained agree well with the experiment. It is suggested that further research
be carried out with special attention to employ multiple modes in the formula-
tion for accurate determination of mean-square stresses, and additional test
data on simple panels are needed for an adequate quantitative comparison.

REFERENCES
1. Rudder, F. F., Jr. and Plumblee, H. E., Jr., "Sonic Fatigue Design Guide

for Military Aircraft", AFFDL-TR-74-112, W-PAFB, OH, May 1975.

2. Fitch, G. E. et al, "Establishment of the Approach to and Development of
Interim Design Criteria for Sonic Fatigue", ASD-TDR-62-26, W-PAFB, OH,

June 1962. :

3. Van der Heyde, R. C. W. and Smith, D. L., "Sonic Fatigue Resistance of
Skin-Stringer Panels", AFFDL-TM-75-149-FYA, W-PAFB, OH, April 1974.

156



1o0.

11.

12.

13.

14.

15.

16.

17.

Jacobs, L. D. and Lagerquist, D. R., "Finite Element Analysis of Complex
Panel to Random Loads," AFFDL-TR-68-44, W-PAFB, OH, October 1968.

Jacobson, M. J., "Advanced Composite Joints: Design and Acoustic Fatigue
Characteristics," AFFDIL-TR-71-126, W-PAFB, OH, April 1972.

Jacobson, M. J., "Sonic Fatigue Design Data for Bonded Aluminum Aircraft
Structures," AFFDL-TR-77-45, W-PAFB, OH, June 1977.

Mei, C., "Large Amplitude Response of Complex Structures Due to High
Intensity Noise," AFFDL-TR-79-3028, W-PAFB, OH, April 1979.

Chu, H. N. and Herrmann, G., "Influence of Large Bmplitudes on Free Flex-
ural Vibrations of Rectangular Elastic Plates," J. of Applied Mechanics,
Vol. 23, December 1956, pp. 532-540.

Caughey, T. K., "Equivalent Linearization Techniques," JASA, Vol. 35,
November 1963, pp. 1706-1711.

Caughey, T. K., "Nonlinear Theory of Random Vibrations," in Advances in
Applied Mechanics, Vol. 11, Yih, C. S., ed., Academic Press, 1971, pp. 209-
253.

Spanos, P. T. D. and Iwan, W. D., "On the Existence and Uniqueness of
Solutions Generated by Equivalent Linearization,” Int. J. of Non-Linear
Mechanics, Vol. 13, 1978, pp. 71-78.

Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells,
McGraw-Hill, 1959, pp. 415-428.

Lin, Y. K., "Response of a Nonlinear Flat Panel to Periodic and Randomly-
Varying Loadings," J. Aero. Sci., September 1962, pp. 1029-1033, p. 1066.

Yamaki, N., "Influence of Large Amplitudes on Flexural Vibrations of
Elastic Plates," Z. Angew. Math. Mech., Vol. 41, 1961, pp. 501-510.

Seide, P., "Nonlinear Stresses and Deflections of Beams Subjected to
Random Time Dependent Uniform Pressure," ASME Paper No. 75-DET-23, 1975.

Seide, P., "Large Deflections of Prestressed Simply Supported Rectangular
Plates under Uniform Pressure," Int. J. Non~Linear Mechanics, Vol. 13,
1978, pp. 145-186.

Van der Heyde, R. C. W. and Wolfe, N. D., "Comparison of the Sonic

Fatigue Characteristics of Four Structural Designs,” AFFDL-TR-76-66,
W-PAFB, OH, September 1976.

157



Figure 1. Geometry and coordinates.
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Figure 2. Mean-square deflection versus spectral density
parameter of excitation for simply supported
panels, Z = 0.02.
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Figure 4. Effect of damping on mean-square deflection for a
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POST-BUCKLING BEHAVIOR OF A BEAM-COLUMN

ON A NONLINEAR ELASTIC FOUNDATION WITH A GAPl

Edward N. Kuznetsov
Battelle Columbus Laboratories

Thomas G. Johns
Battelle Houston Operations

SUMMARY

The subject of this paper is the structural behavior of an elastic beam—~
column placed with a gap between two nonlinearly elastic layers each resting
on a rigid foundation. The beam-column is laterally supported at both ends
and subjected to a uniform tramsverse load and axial compression. Its
slenderness is such that the axial compressive force exceeds the amount that
would be necessary to buckle it as a simply supported column. The elastic
layers are represented by an elastic foundation with a strongly nonlinear
specific reaction taken as a rapidly increasing function of the layer com-
pression. The analytical model developed simulates the entire pattern of the
deflection and stress state including layer and end support reactions, under
gradually increasing axial force.

INTRODUCTION

There are many cases when a primary buckling mode occurring at the onset
of buckling cannot develop freely (References 1-2) because of changing con-
straint or support conditions. Such is, in particular, the case of a column
with lateral supports arranged with gaps, etc. In this case, the post-buckling
deflection is constrained laterally and the axial force can be increased by far
in excess of its first critical value. As a result, the structural behavior
is characterized by a sequence of alternating gradual changes in the deformed
configuration and rather abrupt jumps fromone equilibrium configuration to
another. A similar behavior pattern was observed (Reference 3) for a com—
pressed plate.

The subject of this paper is an elastic beam-column placed with a gap
between two nonlinearly elastic layers each resting on a rigid foundation
(Figure 1). The beam-column is laterally supported at both ends and subjected

1 This study was sponsored by the American Gas Association Pipeline Research
Committee.
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to a uniform transverse load and axial compression. The elastic layers have a
strongly nonlinear specific reaction taken as a rapidly increasing function of
the layer compression. The problem consists in the analytical evaluation of the
stress state and deflection under gradually increasing axial compression.

The deflection of the beam~column in consideration is small enough to
justify the use of -the conventional linearized expression for the curvature.
However, there are two other sources of nonlinearity (nonlinearly elastic
layers and the presence of a gap) which were fully accounted for. Note, that
the presence of a transverse load makes the problem nonhomogeneous so that it
is not a bifurcation problem.

ANALYTICAL FORMULATION AND SOLUTION METHOD

Under the above assumptions, vertical equilibrium of the beam-column
requires that

F(Y) = EIY )Y + pY(x)IT + Q(¥(x)) -G =0 (1)

Here Y is the elastic deflection of the beam~column, EI is its flexural
rigidity, P is the axial compression force, Q(Y) is the foundation reaction per
unit length as a function of Y, G is the distributed transverse load (assumed
uniform and constant), x' is the column longitudinal axis and prime denotes
differentiation with respect to x.

The elastic foundation reaction is taken in the following form:

0 [Y[.j_c
(sgn Y) k (]Y]| - o) Y| > ¢

where k and n are given constants and ¢ is the gap size. Thus, the foundation
reaction is proportional to a power of the beam-column penetration into the
elastic layer.

The self-correcting finite increment method (Reference 4) will now be
applied for solving Equation (1). To this end the compression force P is
given an infinitesimal increment p which results in some infinitesimal wvaria-
tion y(x) of deflection Y(x):

F(Y+y) = EI(Y+y) 1" + (P+p)(Y+y)II + Q(¥+y) - G = 0. (3)

Specializing Q(Y) in accordance with Equation (2) yields

v 1T 11 0
F(Y) + EI + P + pY +{ }—G=0. 4
(Y) y y P kn(Y-c)i-ly )
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The operation performed is known as Frechet differentiation. It resulted
in a linearized equation in unknown variation y(x) and is rigorous for in-
finitesimal increments only. The equation is extrapolated to small but finite
increments which permits its use in a step~by-step solution procedure. A
solution obtained at each step is an approximate one. Therefore, employing
it as a starting point for the next step introduces some error in addition to
that resulting from the next step itself. This is partially offset by a
correction which consists in retaining the first term in Equation (4). TFor an
exact Y(x), this term, according to Equation (1) would be an identical zero.
Since in reality the solution obtained after the m-th step,

) = ) + v, (5)

is approximate, it does mot turn F(Y) into zero. Retaining this term in
Equation (4) compensates for the error of a current step solution thus
preventing both systematic and occasional errors from passing to the next step
and accumulation.

The solution of linearized Equation (4) is sought in the form of a linear
combination of several approximating functions satisfying the boundary con-
ditions of the problem:

N .
o (2i-1)mx
e =2 yisin gy (6)
1=

where % is the beam half-length (Figure 2). As is readily seen, only _
symmetric configurations of the beam are taken into consideration. This was
done because the particular case of interest is characterized by a relatively
big transverse load, which precludes the antisymmetric configurations from
occurrence at the early stages of post-buckling deformation. (The unifo?m
transverse load would perform zero mechanical work over antisymmetric dis-
placements).

The Galerkin method is now applied. It requires substituting the above
y(x) into Equation (4), multiplying it by one of the approximating functions
and integrating the product over the beam length. This results in.a system of
N linear algebraic equations in unknown parameters v with coefficients

£

_ 2 . 2 (2i-D)wx N

a;; = (DiEI—P)Di 2 + .gs(x) sin ———Ezh——-dx
; ( ) (2j-1)

_ . (2i-1)mx . j=1)mx

aij = .!;S(X)Slﬁ 2% sin 50 dx
and free terms 2

_ 2 . (2i-)7mx 8)

a;; = -D,Y.py + j(;F(x) sin ~=50 (
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where
[(2i-1)7/2812

D, =
S(x) = kn[Y(x)—c]™ T
o (2i-1)mx
F(x) = 1{:1 (D EI-P) DY .sin -~ + Q [Y(x)]-G (9)
and o1
Y. =Y. (10)
1 1

Obviously, making the axial force increments smaller improves the
accuracy of the solution, but increases the number of solution steps. A
reasonable compromise was achieved by arranging intermediate iterations in
which Equation (4) was solved without incrementing the axial force (i.e.,
setting p = 0). In these iterations, the pattern of the beam interaction with
the elastic layers is refined for the fixed magnitude of the axial force. Only
after some assigned level of accuracy is reached, the axial force is given its
next increment.

The specificity of the problem in consideration is that more than one
equilibrium configuration may correspond to a given axial force. To determine
whether other equilibrium configurations exist in the vicinity of the original
one, the following approach is employed. Upon achieving the convergence of
the internal iterations for a fixed value of the axial force, the system is
perturbed by giving the deflection some random distortion and internal itera-
tions are performed once again. This may result in overcoming the energy
barriers separating the possible equilibrium configurations and increases the
likelihood of solution convergence to the most stable configuration.

The perturbation is physically meaningful: it reflects imperfections in
material properties, system geometry, load application and many other factors
not accounted for explicitly. The magnitude of the distortion presumably
correlates with the mentioned imperfections.

A computer program implementing the above features was written and
applied to the analysis of a precompressed cryogenic pipeline.

NUMERICAL RESULTS AND DISCUSSION

The concept of preshortening a cryogenic pipeline by compression is
intended to reduce or eliminate the need for thermal expansion/contraction
devices. The concept involves the compression. of one pipe (inner, conveying
pipe) within another (casing pipe). The pipes are separated by thermal
insulation and an air gap (clearance) exists between the insulation and the
inner or the outer pipe. The magnitude of the compressive force is limited
by the amount that can be tolerated in the inner pipe without its local
inelastic buckling as a cylindrical shell (Reference 5). Under this force,
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the column buckling behavior of the pipe was investigated to determine the
effect of design variables such as the gap size, pipe length, insulation
elastic properties, etc., upon the maximum stresses, lateral reactions, and
amount of absorbed compressed length.

The following, rather typical data were used in one of the numerical
examples:
pipe length - 100 m (328 ft)
pipe outer diameter - 46.7 cm (18 inches)
wall thickness - 0.9525 cm (3/8 inch)
clearance - 2.54 cm (1 inch)
permissible stress - 320 MPa (46 ksi).

Figure 3 shows the evolution of the elastic deflection of the pipe as the
compression force grows. Diagram 3a is the sagged configuration of the pipe
resting on the elastic layer almost uniformly compressed. As the axial force
is increased, the pipe bends and develops progressively increasing waviness
(3b and c) till the end segment '"snaps through" (3d). At this moment the pipe
assumes another equilibrium configuration which continues its evolution in
further loading (3e).

The results of numerical experiments confirmed the role of systematic
perturbations applied during the analysis in order to obtain equilibrium
states with lower total energy. In all cases the self-correcting finite
increment method provided a rapid convergence of the computation process.

From the viewpoint of the precompression concept it was important to
establish the role of the gap between the pipe and insulation. Conceivably, a
wider gap could even be an advantage since it would provide more room with
_ which to absorb the "excess'" pipe length. A parametric study showed, however,
an adverse effect of the gap on the relative compression of the pipe: the
wider the gap, the greater the portion of the material strength spent on
bending stress. Interestingly, the maximum stress (composed of the axial and
bending stresses) does not grow monotonically with the compression force.

The performed study also revealed the role of the pipe length. As shown
in Figure 4, the amount of compression that can be absorbed without exceeding
the permissible stress increases for shorter lengths of pipe. The limiting
case is the pipe length at which overall buckling does not occur at all.
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T



0 a
| —— a
3
t €
=
>
n
876 5 b.
(193) ©
c
——————————————————————— -— o
| o
X
88 (12.5)
’a 1
o
X
= 1751 . c.
£ (386
€ el e e e e e e e - =
'g (23.9)
a X
IS
3 x '
329
(46.8)
3067 d.
(676)
320(45.6) )
_ X
5
3355 o e
(740) \ o
—— L

0] 5 10 18 20 25 30 35 40 45 50
Pipe Length, meters

— — Undeformed elastic layer surface

X 88 Location and magnitude of the maximum stress,
MPa (ksi)

Figure 3.- Development of elastic deflected shape with increasing axial load.

172



1.75 - T - I | |

320 MPa (46 ksi)
2.54 cm (1 inch)

(o]
won

2
|

ro

(&)

l
1

Compression Strain x 103

1.60 | | 1 I

(0] 25(82) 50(i64) 75 (246) 100(328)
Pipe Length, m(ft)

Figure 4.- Amount of compression that can be absorbed without exceeding
the allowable stress versus pipe length.

173






STRAIGHTENING OF A WAVY STRIP - AN ELASTIC-PLASTIC
CONTACT PROBLEM INCLUDING SNAP-THROUGH

Dieter F. Fischer and Franz G. Rammerstorfer
VOEST-ALPINE AG, FAT, Linz, Austria

SUMMARY

This paper deals with calculating the non-linear behaviour of a wave-like
deformed metal strip during the levelling process. Elastic-plastic material
behaviour as well as nonlinearities due to large deformations are considered.
The considered problem leads to a combined stability and contact problem. It is
shown that, despite of the initially concentrated loading, neglecting the
change of loading conditions due to altered contact domains may lead to a
significant error in the evaluation of the nonlinear behaviour and particularly
to an underestimation of the stability limit load. The stability is examined by
considering the load deflection path and the behaviour of a load-dependent
current stiffness parameter in combination with the determinant of the current
stiffness matrix.

INTRODUCTION

The stability of nonlinear structures is the goal of many recent papers.
Especially the snap-through behaviour of initially curved slender bars has been
analytically as well as numerically considered (e.g. ref. 1,2). But
investigations in which the influence of contact between the loading and the
loaded structures is considered are rather rare. Such a combined contact and
stability problem will be treated in this paper. In order to show how the
loading conditions influence the nonlinear behaviour and the stability limit in
particular, let us draw our attention to the following simple example.

Figure 1 shows a shallow circular arch which is loaded once directly by a
concentrated load and in a second case by a rigid horizontal plane plate moved
towards the arch. The latter is treated as a contact problem. In both cases,
symmetry with respect to the vertical axis is assumed for simplicity.

Applying the algorithm which is described later we get results shown in
figure 2. In figure 2 the load displacement path, P(w), the dependence of the
normalized determinant of the current stiffness matrix, det,K(P), and of the
current stiffness parameter (ref. 3,4), CS(P), on the applied load, P, is
described. In both cases, distinct snap~through behaviour can be observed by
considering the final tangent of the det K(P) curve which crosses the P-axis
perpendicularly (ref. 5). Also the vanishing current stiffness parameter, CS,
indicates snap-through. However in the case b (load application by a rigid
plate) a significantly higher stability 1limit than in case a was found. Thus,
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it is important to recognize the altering loading conditions even if the load
is applied-at a single point in the initial state (i.e. at a very low load
level). The problem being dealt with in the following chapters is a typical
stability and contact problem.

DESCRIPTION OF THE WAVED STRIP PROBLEM

The behaviour of an infinite strip with periodic wave-like initial out-
of-plane deformations is investigated during a straightening process. Periodic
out-of-plane deformations at the boundaries (fig. 3) or in the middle domain of
the strip sometimes appear in metal sheets as a consequence of the rolling
process. The straightening is based on plastic deformations caused by moving
the strip through a leveller in which it is bent by rollers in a repeated
manner. In some cases, a snap—-through of the waves can be observed which
renders an unsuccessful result of the levelling process. In order to find proper
conditions for avoiding snap-through, a procedure for calculating the non-
linear elastic~plastic stability problem was developed. The deformations during
levelling are caused by rather stiff rollers. A contact problem has to be
solved simultaneously with the stability problem in order to account for the
stiffening effect due to expanded contact.

To approach the real behaviour of the waved strip during the levelling
process by mathematical investigation, the complicated transient problem is
simplified to a static consideration: The nonlinear behaviour of the shaded
area of the strip in figure 3 under a downward moving rigid roller is
calculated with the aid of the finite element method.

THE MATHEMATICAL MODEL

The following data were taken from an example in which instabilities in
the practical levelling process were observed: B = 3500 mm, L = 1000 mm,
S =20mm, t = 10 me. The material is assumed to be elastic-plastic with linear
strain hardening. The following material properties correspond to
experimentally derived values at a temperature of 600 ©C (the strip temperature
during the levelling process): E = 180000 N/mm? (Youngs' modulus), v = 0.3
(Poisson's ratio), oy = 130 N/mm2 (initial yield stress), Ep = 5000 N/mm2
(strain hardening modulus). The shaded area in figure 3 under consideration
represents a doubly curved shallow shell which is modeled using ADINA shell
elements (ref. 6). These elements allow for nonlinear material behaviour as
well as geometric nonlinearities using the total Lagrangian formulation.
Figure 4 shows the finite element model.

The midsurface of the shell is approximated by

4v2 -
z(x,y) = S E%y— sin 153%513 . (1)

As shown in reference 7 the contact conditions can be verified with the
aid of contact elements. These contact elements are simple truss elements
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which have a certain nonlinear elastic material behaviour (figure 5).

The contact elements give only contributions to the global current
stiffness matrix if the shell nodes to which they are attached belong to the
contact area. They allow only transmission of compression forces corresponding
to the contact pressure. Before a shell node becomes a contact point, the gap
between the rigid roller and the shell surface must be closed. This is
accounted for in the location-dependent activating strain, Egap(y):

S-z (x=0,Yy)
S+h-z (x=0,Yv)

= - 2
€ p(Y) (2)

ga

The values of the tangent moduli, E1, Ep, the stresses, 01* and 02*, the
fictitious length, h, and the cross section area, A, of the contact elements
must be properly chosen. This means that the contact elements should be stiff
enough to prevent the roller from penetrating in the shell and, that the
properties must not lead to a numerical instability of the incremental-
iterative algorithms described below. The following values appear in the
presented analysis: Eq = 1000 N/mm?, E% = 7500 N/mm?, 01*= -5 N/mm?Z,
02*= -20 N/mm2, h = 80 mm, A = 1000 mm?. These values render a well-
conditioned system of equations. If one would like to regard the local
compressibility of the roller, a certain choice of the o-e-behaviour of the
contact elements would make it possible. Furthermore, bending deformations of
the roller could be considered, if beam elements would represent the axis of
the roller instead of the rigid line BC (figure 4). Both effects, local
compressibility and bending of the roller, are negligible in the investigated
example.

In orxrder to represent the periodicity of the structure, the boundary
conditions of the finite element model are introduced as shown in figure 4.
The waved strip will elongate globally due to the levelling process. For the
x-displacement at the boundary x = L/2 the following restriction is wvalid:
uy (x=L/2,y) = uy(x=L/2,y=0).

DESCRIPTION OF THE ALGORITHMS

The analysis is performed in an incremental-iterative manner, using the
tangent stiffness matrix concept and the BFGS iteration procedure as described
elsewhere, e.g. in references 8,9. Let us concentrate our attention to the
stability algorithms. Algorithms which treat nonlinear stability problems as
a sequence of eigenvalue problems are described in recent papers (e.g. ref.

10 - 12). Let us now use the normalized determinant of the current tangent
stiffness matrix, detpK, and the current stiffness parameter, CS, recently
introduced by Bergan (ref. 3,4) as indicators for the stability behaviour of
the structure during the lowering of the rigid roller. It is a well-known fact
that at the stability limit, A—e=Acrit (A... load amplifier, Acrit... critical
load amplifier), the determinant of the tangent stiffness matrix vanishes:

lim det K(A) = O. ) (3)
A—=Acrit
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This criterion holds for both buckling as well as snap—through_because it
is based on the existence of a nontrival solution §y of the eguation

K(Acrit). 8y = O (4)
valid at the bifurcation point and at the snap-through point.

One can distinguish between buckling and snap-through by considering how
the determinant approaches zero (ref. 5,10): In the buckling case

. detkK
lim 0detE _ (—w,0) (5)
o
crit

holds. If the determinant behaves according to

1im odetK e (6)
oA
A=A .
crit

snap—through is indicated.

The Gauss elimination procedure which is implemented in ADINA (ref. 6) is
used in combination with the LDIF fractorization (ref. 13) to solve the finite
element equation system during the incremental-iterative analysis. Thus, it is
almost no effort to calculate the determinant of the nxn stiffness matrix using

the following relations:
K=1LDL', 7)

L is a lower unit triangular matrix and D is a diagonal matrix. Hence,

n
det K =det D = .7, D,.. (8)
- - i=1 ii
This det K is normalized so that dety K(A=0) = 1. At each load level at which

a further contact element is activated, the current global stiffness matrix
increases suddenly due to the added contribution of the activated contact
element. In order to avoid discontinuities in the detng(k) curve the current
dety values are smoothened by a further normalizing procedure which levels the
detp value just after a jump to that which appeared immediately before it. It
might be proper to delete all contributions related to the contact elements
from the current stiffness matrix if detpK(A) is calculated. This would
represent the determinant behaviour of the shell itself and the contact would
only contribute to the load vector on the right-hand side of the incremental
finite element equations.

The current stiffness parameter, lCS, has the following meaning (i
denotes the increment number): It represents the current stiffness of the
structure as being a relation between a load increment and the corresponding
displacement increment. Assuming proportional loading one can express

i i
R = "ARres- (9)
. i .
lB_denotes the external load vector at load level "), Ryof is the constant
reference load vector. Relating the current stiffness to the initial stiffness
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(with 1A &« 1) *cS can be defined as

ig = a1 et

1,1
Al a

(10)

using the Euclidean norm of the incremental displacement vector to scale the
relations.

The combination of the determinant analysis and the current stiffness
parameter calculation offers a good tool to predict the stability limit, A ,igr
as well as the instability mechanism (i.e. buckling or snap—through) as shown
in reference 14.

DISCUSSION OF THE RESULTS

Figure 6 shows the load displacement path of the initial contact point
(node A in figure 4), the normalized determinant of the stiffness matrix,
detnK(A), and the current stiffness parameter, CS(A). The results of the
analysis of the same shell loaded by a concentrated load in A are also
presented in figure 6 as a comparison. The following facts can be observed: In
both cases a stability limit is reached and snap-through of the wave takes
place. The shell loaded by the rollexr behaves significantly stiffer than the
point-loaded shell. This is caused by the altering loading conditions due to
the increasing contact domain as explained above. In the concentrated load
approach, a horizontal tangent of the load displacement path is reached before
considerable plastification takes place. In the contact solution, plastic
domains appear in the vicinity of the contact area long before a significant
stiffness loss (i.e. a rapid decrease of CS) can be observed.

In figure 7 the deformed state of the shell immediately before snap-through
is shown. One can see that the contact domain between roller and strip is
considerable. Furthermore, it is interesting to notice that the initial contact
point A belongs no longer to the contact area.

CONCLUSION

From these considerations one can conclude that neglecting the change of
loading conditions due to deformation dependent contact conditions may lead to
an unnegligible error even if initially concentrated load conditions are
justified.
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Figure 3.~ The waved strip.

HINGED

183



]
€ gap
. ) 0,
GAP €,
6,

6
\\ \‘\\
5 L\ ™~
\ a/ "\
LOAD 4 L\ 6\
AMPL. \ \
\
1 \ b .CS
3t \
, \ \
\\\ \
1r det.K > \
~
\\\\~ \
0 L | ~J

. |
5 10 15 20
DISPLACEMENT u, mm

L | I | I I
0 2 & 6 8 10
det,K(4), CS(A)

Figure 6.- Results of the analysis of the wavy strip plate obtained by
(a) solving the contact problem and (b) concentrated load approach.

184



UNDEFORMED
DEFORMED
CONTACT
/ o - /
= == == .~====§=§§§§
== =

v/

Figure 7.~ Undeformed shell and configuration immediately before snap-through.

185






A PROPOSED GENERALIZED CONSTITUTIVE EQUATION FOR NONLINEAR
PARA-ISOTROPIC MATERIALS#*

K.K. Hu, S.E. Swartz and C.J. Huang
Department of Civil Engineering
Kansas State University
Manhattan, Kansas

INTRODUCTION

With the advent of finite element models of varying complexity the focus
of solutions to problems in solid mechanics has shifted very strongly into the
direction of more accurate material description. This is especially true for
materials for which strength characteristics vary widely with state of stress.
In particular, concrete which is non-isotropic at any level of deformation and
is also non-linear in terms of stress-strain relationships has been singled out
for intensive study. This includes work on constitutive relations (refs. 1 to
5), and failure (refs. 3,4, and 6 to 15).

Related developments in failure theories are those included in references
16 to 25.

This list is by no means exhaustive but formed a background basis which led
to the model proposed in this paper. 1In particular, the developments in the
areas of maximum deformation theory and the Von Mises-Hencky theory provided
motivation for the concept used here (ref. 26).

FAILURE SURFACE

The proposed generalized constitutive equation is an extension of the work
of Hu and Swartz (26) on the study of the failure of materials so that for any
kind of material in any state of stress its mechanical behavior can be charac-
terized by a single functional. According to the theory, a material failure
initiates when the state of stress at a point is such that the following func-
tional reaches a threshold value FO:

91 99 93 c, t
J E6y "Gy T Ee 10 o)
F(3) = c _t 2c t + (1-a) lt c : ° t
2[0f O - (cf - o ) Jl] €¢ (cf + Jl) + pefc(cf - Jl)
(1)

% This research reported herein was supported in part by the National Science
Foundation, Grant No. ENG 78-07829.
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In this equation

a material related scalar factor which is determined by experi-
mental data.

¢

Jl = 01 + 02 + 03.
2

3, = (o] - 02)2 + (o, - 03)2 + (o - o).

= the components of principal stresses, tensile stress hag positive
value. A vector of principal stresses is expressed by o.

lof t 6.© = the absolute value of the ultimate stresses of the material under
uniaxial tension and compression, respectively.

> t e . = the absolute values of strain component in the direction of uniaxial
force when stress reaches the corresponding ultimate value.

the secant modulus of elasticity of the material subjected to uni-
axial stress (tension or compression as appropriate).

=
~
Q
~
Il

p = the Poisson's ratio of the material (related to stress level).
CONSTITUTIVE EQUATIONS

Non-linear response will take place when the increment of the functional is
in an increasing manner and its value is beyond some threshold level (possibly
zero). The material will be fractured at points where the state of stress
reaches the surface of failure, i.e., F(g) = 1.

Between the initial state to fracture, the response is assumed to be charac-
terized by Drucker's (17) theorem of orthogonality with the use of the functional
proposed by the generalized failure theory, eqn. (l). That is, if the increment
of principal strain components is decomposed into linear and non-linear
increments,

{de} = {de®} + {deP}, (2)
the non-linear part is characterized by

{aeP} = 6(&) {g(®)} ar. (3)
where

G(g) = a scalar function of stresses,

a unit vector of the gradient of the functional at the
point of interest.

{g()}

Note that G values (under uniaxial loading) can be determined by some stress-—
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strain relationship. In the general case, especially for those materials like
glass or concrete, the G function in uniaxial tension differs from that of uni-
axial compression remarkably. Therefore a weighted average is proposed. Accord-
ing to this, the relationship between the vectors and principal strain increment
and the principal stress increment is proposed to be characterized by the follow-
ing generalized constitutive equation:

1 -p -u
el = |3 [ 1 - | + 6 (e LVF@ J|{do) ()
-p  -u 1
In this E = the modulus of elasticity of the material, LVF = the row vector of

the gradient of the functional at the point of interest, and the function G(g)
is calculated by

3 2
[ I (6;(0,)0)7]
¢ =5 H(F-F_) H(AF) (5)

z 2
O.
i=1 *
which is a weighted average according to the values of the corresponding princi-
pal stress components. Gi(oi) depends on the value of the i-th uniaxial princi-

pal stress and is calculated according to

G; (o) = G'[F(o,)] H(oy) + 6 [F(5,)] H(-0,). 6)

In this formula, H is a unit step function. Let AeP = s?(c, + Ac.) - ep(o,),
AF = F(o, + 80,) - F(a,). o0t * *

Then, P
.. Ae

+ _ limit 1 i

p
. Ae

- _ limit 1 i

where g, is the i-th component of the unit vector {gl}.
c _ t t c . .
1f of = 0, ef = €g and o = 1 is selected, the proposed failure theory

agrees with the Von Mises' theory and the generalized constitutive equation
reduces to the well known Prandtl-Reuss stress-strain relation (refs. 4,11).
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NUMERICAL EXAMPLE

Applying the proposed theory to plain concrete for the purpose of illustra-
tion equ. (1) is modified to read
)

J [o

f
c t
cf 1+ + (of -uo

t
+u(02+03)](crf +o

2 1

t c
- (cf -0

(8)

=2 -
F 5 C, T + (1-0) -

f f £°1 f
The implication used is an invariant modulus of elasticity and for concrete, so-
called initial yield occurs at about .45 fé .

)3 t g

f 1

Using test data for concrete (3) the level surfaces of the functional, the
stress—-strain curves of uniaxial tension and compression tests and the variations

of G+[F(ci)] and G_[F(oi)] are shown in Figs. 1-3. The best value of o for

concrete is 0.46 which has been used in these curves.

Note in Fig. 1 the shape of the curve in the tension-compression zone follows
very closely the shape of the experimental curve obtained by Kupfer, Hilsdorf
and Rusch (3). The stress-strain curves presented in Figs. 2 and 3 were obtained

using testing equipment described in Ref. 27. Using these data, Equations 8 for

F and 7a and 7b for G and G~ were evaluated numerically to obtain the curves
displayed.

CONCLUSIONS

A proposed constitutive model for non-linear materials has been presented.
The primary virtues of the model are its logical combination of distortion states,
inherent simplicity and generality.

Results presented for the model applied to concrete show good agreement with
published experimental data for failure. The model can be readily incorporated
into existing computer codes provided sufficient experimental supportive data
are available.

As reported elsewhere (10), for instance, the experimentally obtained para-
meter o for cast iron is around 0.93.

The proposed constitive equation is presently being utilized in the develop-
ment of a finite element code for determination of unstable crack growth and
stress intensity in concrete beams.
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FINITE ELEMENT ANALYSIS
OF HYPERELASTIC STRUCTURES

Farhad Tabaddor
B.F.Goodrich
Akron, Ohio

SUMMARY

Most hyperelastic materials are treated as incompressible or nearly
incompressible in analytical approach. The use of the penalty function, to
account for near incompressibility is discussed and compared to that of
Lagrange multiplier. A scheme to use Lagrange multiplier, without having
to treat it as unknown, is also presented.

INTRODUCTION

The finite element analysis of hyperelastic materials involves large
displacements and nonlinear material description., These materials are
often considered as incompressible or nearly incompressible in theoretical .
developments. The incompressibility condition leads to certain simplifications
in the analysis for exact solutions. Such is not, however, the case in
finite element applications. :

In the variational formulation of the finite element problems of
incompressible media, the incompressibility condition is introduced through
the use of Lagrange multiplier (1,2). This multiplier is an additional
unknown scalar function which can be accommodated in the discrete model
by displacement shape functions or by similar methods. The procedure re-
sults in an increase in the number of unknowns.

The incompressibility condition, aside from being inconvenient in
finite element analysis, is an approximation for rubberlike materials.
Such approximation becomes increasingly less accurate as the percentage
of carbon black increases in the rubber compound (3). The exact enforcement
of incompressibility is therefore not actually required.

In this work the near incompressibility is accounted for by use of the
penalty function (4) in the expression for the strain energy function.
The constitutive equations are then obtained in incremental form. This
is most suitable for a nonlinear finite element. The incompressibility
is shown to be closely satisfied for large penalty numbers. The
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constitutive relations with penalty number are compared with the exact
solution for the incompressible case. It is shown that for a given accuracy
of the solution, the penalty number must vary in the course of finite

element solution from element to element and from one increment to the

next. Some numerical results are presented to illustrate these points.

A simple scheme to use variable penalty number is also proposed. Finally

the incremental form of constitutive equations for the case of incompressible
material is derived from the strain energy function with the Lagrange
multiplier. An alternative procedure is then proposed which does not require
treatment of the Lagrange multiplier as unknown.

BASIC EQUATION

The strain energy function W for isotropic hyperelastic materials
has the following form:

W = W (I, I2, I3) (1)

Where L1, I2, and Isare the three invariants of Green-Lagrange strain tensor
and are related to strain components, for the axisymmetric case, as follows:

t t t
I, = 3+2 (Y11 + Y22 + Ys33) (2)
t t t t t t t
Io = 3 +4 (Y11 + Y22 + Y33 + Y11 Y22 + Y11 Yss3 +
(3
t ot t
Y22 Y33 — Yi27)
t t t
Is = 4 %11 + 1) 2% +1) - 47y127 3 + 27Y33) (4)

tYll,tYZZand tY33 are the current values of strains. In this work, only the
axisymmetric case is considered. The discussion, however, can be extended to
the three~-dimensional case without any difficulty. In the axisymmetric case,
the strain invariants are related to current displacements by
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t t
t, _ du 1, 9wm 3 uz
m-———LaX1+2[<——aX1) +(5az, ] ()
t t t
_ duy l[ du1 (2 Btuzz]
b~ Txe T 2 v fOT) (6)
t
to. . UL L ouye2 7
Y33 = T 3 ( - ) (7
e _ 13w 3%u, ] L1 [Btul 3%u;
Ti2= 5 5% 3 %1 2 L9x: 9x
t t
9 ux 9 uz] 8
tIx, 53X, (8)
X2 1s the axis of symmetry and x1X, is the axisymmetric plane. The
current displacements parallel to x; andxz axes are denoted by u; and uz
respectively.
£ 1
The second Piola-Kirchoff stress tensor components ™ at current
time, can be obtained from the following relations
R aW(Ig,’: Ieo 13) 4 5-1,2,3 (9)
To obtain the incremental form of constitutive equations we define
e h t+AtT13 _ tT13 i, =1,2,3 (10)
= t+AtY - i,j =1,2,3 (11)
Yij ij ij ’J b 3
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i3
where T and Y;sare incremental stress and strain components respectively,
The incremental stress—-strain relations may now be obtained from the
preceding equations, after some algebraic manipulations, as

ij _ < s o
T = Cijkl Ykl 1,5 = 19233 (12)
where
2
Cpa 7 (FroeT ) TR A
13 m “n ) Y1 Vij
2
+ -g%— é}liLh i,9...= 1,2,3 (13)
Tk1 YlJ

Repeated indices imply summation convention.
STRAIN ENERGY AND PENALTY FUNCTION

The strain energy function for nearly incompressible materials can be ob-
tained by a series expansion of the strain energy function about (I;-1)
and retaining the leading terms

W = Wi(I,,I2) + Wa(Iz,I;) (I3 -1)

+ W3(I1,I2) (I:-1)2 + . .. (14)

We only consider the following special case

W o= Wi(I1,I2) + Hi (I3-1) + Hp (I3-1)2 (15)

where H, and H, are constants. Many different strain energy functions
have been proposed in the literature by further expansion of W; and
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retaining the leading terms. A general form covering the proposed:hodels is

W= E,Cy (11-3)1 (12-3) + Hi(Ts-1) + Ha(Is-1)2 (16)

wWhere Ci‘ are constants. The constant H, is“not independent if the undeformed
state is stress free, and should satisfy the following relation

Hy = = (Cig + 2 Co1) an

Coo = O

We may now consider H2 as a penalty number to handle the imcompressibility.
The satisfaction of incompressibility requires H2 to approach infinity.

For practical purpose the incompressibility can be approximately satisfied
by not too large values of H2 . The incompressibility can, however, be
satisfied more accurately as H2 gets larger.

In finite element analysis, however, the large values of H:z can
lead to computational problems due to overriding stiffnessassociated with
H2 |, as discussed in (4). A scheme to employ the variable H, , depending
on the local deviations from ideal incompressibility, can therefore improve
the solution as discussed later. On the other hand we can recover the
classical approach by letting H2 be zero and treating Hi as the unknown
Lagrange multiplier

W =X Cij (Il—B)i (Iz—3)j + A(I3-1) (18)

I3—l=0

Unlike the penalty function, A is then considered as an additional unknown
and is equivalent to hydrostatic pressure.

ONE DIMENSIONAL STRESS-~STRAIN
RELATION

To compare the expressions (16) and (18) and to see the behaviour of the
material with penalty number, we consider the case of one dimensional stress-
strain relation. Let us consider an axisymmetric medium subject to the
following uniform strain field:
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Yi1 = Y = constant

Y22 =Y

Yss = Y 19

where Y and ¥ are constants, Let us further assume the simplest form of
Wi such that

Wy, = C1 (I;-3) + C2 (I2-3) o 20)

For strain energy function (18), the stress-strain relations are

I = 20 4+ 4G (LAY +Y) +20 (1 +2y) (L +2Y)

122 = 20, + 4C, (1L +27) + 2X (1 + 27)2

3% = 2C; + 4C, (L +y4+Y) + 20 (L +2Y) (1 +2Y)

e (21)

Y is, however, not independent and is related to Y by

(L+2y) A +2)2-1 = 0 (22)

We choose A , so that ! and T®? are both zerc to simulate the uniaxial
loading. This choice would then lead to the following stress-strain relation
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in

3 1
T2, = [1 - @ +27)" /2] <201 + 2 C2(1 + 2y )'/2> (23)

The Cauchy stress 0?%is then related to T?Z by
022 = (1 +2y) T?? (24)

The one-dimensional stress-strain relation for the case of penalty
number is now obtained from (16)

il = 20, +4C, A+ Y +7F) +2 (1 +2Yy) (1+2V)x

|:H1 + 2H, (Ia—l)]

~
Il

22 2C1 + 4C2 (1 +2V) +2 (1L + 27 ° [m + 2H, (13-1)]
8% = it (25)

Following the same procedure, we arrive at the following one dimensional
constitutive equation

1
122 = <1 - ————8 - §Y§> <201 +2C (1 +2y)” /2> (26)

where 7 is now related to Hj by
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2H, [(l+27)2(1+2'y) - 1]:

4C1 (Y + Y +2yy) + 4Ca (y+ 7Y + 16yy ) )
2 (L +27) (1 +2y) (27)

The above equation must be satisfied for all values of H_ . It can be
seen that, for H, approaching the infinity, the above equation degenerates to

L+2V2 @ +2y) -1 = 0 (28)

which is the expression of incompressibility condition. In this case
equation (26) would become identical to equation (23).

IMCOMPRESSIBILITY AND PENALTY NUMBER

We consider the case where incompressibility is to be satisfied within
some prescribed accuracy € ; that is we require

(1 +2N2 (1 +2Y) -1 =c¢ (29)
For numerical illustration, consider the case where

c

-C‘L =4 (30)
2

Combining equations (27) to (30), we arrive at the following relation

1 )
H€=6—%-—£{-—:1%g— (1+€)/2 (31)

where
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X=1+ 2y

2H,
C>

(32)

and g << 1

For small values of £ , the relation (31) can be further simplified to

_ 1 x + 4
He = 6 -% ~ T G

The stress—-strain relation of the equation (23) is plotted in Figure (1).
The variation of HE as function of strain is plotted in Figure (2).

It can be seen that as Y increases, H must also increase accordingly,

to maintain the same accuracy € on incompressibility condition. It can
also be noted that higher values of H are required in compression than in
tension. The relation (26) may now be written as follows:

1
/2 1
w2 - - %———H;Y) ) <4 + (L + 27) /2> (34)

Comparing (34) and (23), it is observed that the stress for a nearly incom-
pressible model is always less than that of an incompressible model, for the
same strain. This difference, however, depends on the € and approaches
zero as € approached zero, or H approaches infinity. The relative error,
however, is

e = 32 - T2A, = 2e (35)
22 a+2v°2 -1
inc

For a fixed H, € increases with Y but the relative error in the stress
is governed by (35) which is less sensitive to a variation in H .
Eliminating € between (35) and (33), we obtain

205



3 .
= £§E§%2> (x é—1) (36)

W=

He = <6 -

The above equation relates the magnitude of H to level of strain for

a prescribed error € . The equation (33) or (36) may serve as an
approximate method of updating H, in a problem of combined stresses, for
improved accuracy in incompressibility or stress calculation. Further
work is, however, required to develop a more vigorious scheme

in the general case.

INCREMENTAL FORM OF LAGRANGE MULTIPLIER

We now consider an alternative approach to incompressibility problems,
Let us consider the following strain energy function

W = Wi(I;, I2) + A (I3-1)
(37)
I -1 = 0
where A is the Lagrange multiplier. The second Piola-Kirchoff stresses
can now be obtained as follow
t
t ij oW t (1, - 1 9 A
o F— s e b - 3 (38)
97y, . 9 “y.. oty, .
1] 1] ij

t
where A is the current value of A . The incremental stress-strain

relations may be obtained by a procedure similar to that used in the
preceding pages. This would lead to

206



A _ 3%w

- t t
335 ¥ M

+ )\ o(Iz -~ 1)

t
3 Yij

\ = t+AtA _ tX

where A is the increment in the Lagrange multiplier between two consecutive

Y.

Kl

steps in the. incremental solutiomn.

condition is

9Is
t ij
) Yij

multiplying both sides of (39) by Yif,and use of (41), leads to

+

tABZ(Ig —1)
LIS )
o Yij 9 Vi1

.(39)

(40)

The incremental form of incompressibility

N 2
ij oW
Ty, = Y Y.,
i ey Sty kl 4]
Y5 M
2 -
+ 5 3%(13- 1)
t t
955 3 M
or
t _ ij _
A= Y1 Cisrt Yi3 YL
_ 2%, 1) ia Vi
t t
) 3
Y, Y1
c _ 32w
ijkl t t
9 Vi 37

Ykl Y-.

(41)

(42)

(43)
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The following scheme may now be considered for the solution of
incompressible materials without the need for introducing the unknown Lagrange
multiplier. In the process of incremental solution, the last term in the
right hand side of equation (39) is ignored. At the end of each increment,

A can be updated from relation (43). There is, therefore, no need of
treating - A as an independent unknown. No numerical work, however, has
been carried out with this alternative proposed scheme at this time,
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SOLUTIONS OF CONTACT PROBLEMS BY THE ASSUMED STRESS HYBRID MODEL

Kenji Kubomura
System Development Corporation

Theodore H.H. Pian
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

SUMMARY

A method has been developed for contact problems which may be either frictional or
frictionless and may involve extensive sliding between deformable bodies. It is based on an
assumed stress hybrid approach and on an incremental variational principle for which the
Euler's equations of the functional include the equilibrium and compatibility conditions at
the contact surface. The tractions at an assumed contact surface are introduced as Lagrang-
ian multipliers in the formulation. It has been concluded from the results of several example
solutions that the extensive sliding contact between deformable bodies can be solved by the
present method.

INTRODUCTION

The finite element method has been applied by many authors for solving solid mechan-
ics problems which involve undetermined contact surfaces. They include the relatively
simple Hertz contact problem for which there is no sliding between contact surfaces and the
small displacement model can be used [1, 2]. They also include problems involving relative
sliding either with friction or in frictionless conditions [3]. Existing solutions are based
largely on the conventional assumed displacement finite element model.

The present paper is based on an assumed stress approach and on an incremental vari-
ational principle for which the Euler's equations of the functional include the equilibrium
and compatibility conditions at the contact surface. An assumed contact surface is inserted
between bodies in contact and is divided into elements. Contact tractions are independently
assumed in terms of unknown values of such nodes of the contact elements. Thus, a finite
element equation includes nodal displacements and nodal contact tractions as unknown.

This paper is to present the variational principle and the corresponding finite element imple-
mentation for this problem.
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SYMBOLS

Xi , X Coordinates before deformation

Ui , U Displacements defined within an element

Ui ’ Q Displacements defined along element boundaries
Ti T Tractions

Ti , I Contact tractions

m Coefficient of friction

IV The whole boundary of the body
SC\ The contact surface

Su The portion of the boundary where displacements are prescribed
S, The portion of the boundary where loads are applied.
\Y Volume

eii /e Strains

“ij , & Stresses

( )S Quantity tangential to the contact surface

( )n Quantity normal to the contact surface

( ~) Matrix

¢ )., () Tensor

i i

( - ) Prescribed quantity

( )A Quantity pertinent to body A

( )B Quantity pertinent to body B

+

( )A B Quantity pertinent to bodies A and B

( )N Quantity pertinent to element N

al ) Incremental quantity
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GENERAL INCREMENTAL ASSUMED STRESS FORMULATION FOR CONTACT PROBLEM

The requirements for contact (the conditions of contact) are as follows:

(1) At the point of contact between two bodies tractions exerted
on each other are the same in magnitude and are opposite in
directions.

(2)  The normal tractions are compressive and the tangential
tractions counteract relative movement of the bodies.

(3)  There should be no gap and no penetration of material points
at the place of contact.
Consider two bodies A and B shown in Fig. 1 with volumes VA and VB, and boundary
surfaces, 3VA and 3VB which are composed of portions, S? and S?—, and S’:‘ and SE.
These two bodies share a contact surface, SC through which they interact. The previously

mentioned conditions of contact in incremental form are

Il
o

AR o) BESR G 1)

(TSA + AT?) + (TSI‘3 + ATS)

]
o

(2)

(T? + AT?) <

|+

(T 4 aT) (3)

B B B B

(r” + aT) o w(T - +aT) (4)

W+ s o+ x) - (WP B+ xB) = o (5)
[g] n n n n n

W + U o+ X)) - WP B xB) = 0 ©6)
S S S S S S
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and the signs in Eqs. 3 and 4 are chosen such that tangential tractions on this surface act to
restrain the relative movement of contacting points.

A finite element method which is based on a variational principle with relaxed con-
tinuity requirement at interelement boundaries is defined as a hybrid model [4]. Boland and
Pian {5] have applied an incremental assumed stress hybrid method for large deflection
analyses of thin elastic structures. The functional 7 that has been derived in the refer-

ence [5]ibased on the Updated Lagrangian coordmafemsysfem is used as ibase for deriving
the functional for the present problem.

The conditions of no gap and no overlapping on the place of contact are introduced

into the functional by means of Lagrangian multipliers, T + AT and T + AT The
functional ﬂ’ becomes 7fc o i.e.

c o _ _ ]_ ~
Tmec = N[S[ B(Ao"ii) 5 (cn-ii + Alrii) AUm,i AUmli] dV+§ATi AUi dS

. ATB
3VN

+S T.2U.ds ST AUdS -Sw.[ -1(u, +U, .-U .Um,i;JdV
Lo LT 5 hi i Tmyd

A+B SA+B A+4B

N TN VN

+ ST‘( AGiA - AGiB)ds +S T, [(@+x?) - (GiB+X?)]dS]l
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. c
The Euler's equations of ’mc are

4+ = -+ : - ) :
TR %(Ui,i B R R W RN TE [t
T. + aT. = T. + al on S,,'.Arl_B
i i i i N

(T. + AT.)O + (T. + AT.)b = 0 on ‘aVA+B
i i i i N

On the contact surface SC ; in addition to Eqs. 5and 6

N

(o) - G-
(S+As)-
(-

- CI-""A?):O

=
+

b
-

B +ATB
n n

Introducing frictional constraint on Ts + AT'S and Tn +AT'n, such that

ff+A‘f s+“(’f +AT)
s s - n n

C4aU . aU ) (8)
m,i m,j

in \(“N.*.B

(9)

(10)

(11)

(12)
(13)

(14)

(15)

and rearranging Eqs. 11, 12, 13, 14 and 15, results in Egs. 1, 2, 3, and 4. Thus, c
it has been proved that the conditions of contact are Eulers's equations of the functional 7
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These Euler equations are the strain displacement relations, the mechanical boundary
condition, the stress equilibrium requirements along the interelement boundaries and the
conditions of contact. Since they are only satisfied in an average sense within an increment
they cannot be expected to satisfy these conditions in the usual sense. It is, therefore,
necessary to consider a compatibility check, a stress equilibrium check, and a contact check.

It is seen that Eq. 7 already has all of these built-in checks. The 5-th and é~th
integral terms in the functional correspond to the equilibrium check and 7-th term to the
compatibility check. Also, the compatibility and equilibrium checks of the contact surface
(contact check) are easily identified, the equilibrium check being the 8-th integral term
and the compatibility check, the 9-th term.

FINITE ELEMENT IMPLEMENTATION

Since the aim of the present work is fo solve contact problems by the finite element
method, expressions arising from nonlinearities, not due to contact, are excluded from
equations. A technique for solving these equations, with only contact nonlinearities, will
be discussed here.

Neglecting nonlinearities not due to contact, the assumed stress hybrid functional,

7 r:c takes the form

7c = Tf1 ag-Seagav -S oI aJds + S (T + aD)'" aUds
mc N 5 =

. aV S
N o
N N
f 1 afas -| (3 + D) - 2Thes
Sq
N c
-j("j + aT)T [([j s xM) - (@ + xP) ]dS} (16)
5
N
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The stresses ag are expressed in terms of a finite number of stress parameters, ag and
the element boundary displacements mferpolufed in terms of the nodal displacements, gJ
and aq. Also, coordinates are interpolated in terms of their nodal values. As a solid
continuim is subdivided into elements, the contact surface is also discretized into finite
number of elements referred to here as "contact elements” with "contact nodes." The con-
tact traction T + aT is interpolated in terms of its nodal values, t.

. Thus, interpolations of them are: 4g = Peag, ol =R ~ag, g = L. q,
AU = L-aq and T + AT M-et. Subshfuhng fhese mferpolahons into Eq. 16,

and~defining the Followmg matrices

VN aVN
aQ =S LT.aTds, Q° =S L. Tds,
N ~ ~ ~N ~ ~r
Se
S N
N
NRCE =S r[:.T.TdS' RCC): =S M.I-‘[(QA+5A)-(EB +ZB)]dS
N - N ~
e Sc
N N
A A B _ B
B S ML, FN—S ML ds
S S
CN N
the functional, 7€ becomes
mc
N
c T T T
= . . - . + .
77'ch ;_Aﬁ th AB ap E‘;N aq aq AQN 7).
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in which g?\' and BE result from stress equilibrium checks on S, and on the contact
N n
surface S~ , and R® , from the initial mismatch checks on S . .
CN CN CN

Equation 17 contains three unknown vectors, the incremental stress parameters ag, the
incremental displacements aq, and the contact stresses t . Whereas, the vector a8 are

independent on the element level, aqand t are not. Thus, eliminating ag from Eq. 17
~ BY) -

I 4
7S becomes
mc

c  _ T Tt T _ o _ 4,0
Tre == 1 ea" N HN - e ee *aatfly T OR - 82 )
T T
- (AqA . F:J - aqB. F?\j)~1 - LT- 5% (18)

Summing up over all elements and taking the variations of the functional with
respect to aq and t, resultsin
. ~ ~s

K Kel {2a Q-
T
o] ) & 9)
where
T -1 o) o
K =2 gl - -g,Q=Z(A<3 +Q -R)
~ N N N N N N N EN
A
2 E
N o
K_= B ’ R = ZR
.-'C —Z ~ NC
S EN NN

Equation 19 represents the total assembled finite element matrix equation.
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TECHNIQUE OF ITERATIVE SOLUTION

Once the contacting bodies are adequately constrained such that the inverse of the
global stiffness matrix, K=1 in Eq. 19 can be calculated, it can be used throughout the
iteration procedure. Thus, in locating the contact surface only K | needs to be recomputed
in each iteration. The global stiffness matrix K remains constant guring this process. Even
in the case of material and/or large deflection nonlinearities, it is possible to use a modified
Newton-Raphson method; hence the global stiffness matrix K may remain constant during

this process.

For a two~dimensional problem, before each iteration, the contact surface is a line,
fixed in the coordinate system, but not to the contacting bodies. Such line is assumed
known in order to perform the necessary integrals. But if, before the iteration, one has
assumed the location of the contact surface and the positions on it that the contacting nodes
of the bodies will occupy, then it would appear that the displacement increment can be
specified. This is not the case. Instead, the problem is solved for the displacement incre-
ments and if the contact surface found therefrom is not coincident with the one presupposed,
a new contact surface location is calculated, and then an iteration can be followed.

It has been found that the length of the contact element which yields best results is
the same as the length of the contacting side of boundary elements of the bodies. In order
to facilitate programming, the nodes of the contact element are chosen to be coincident
with those of one of the contacting bodies. As a result of variations in load, the place of
contact changes? thus a vital part of the solution is to establish a procedure for calculating
this change. A trial and error scheme is employed because it is virtually impossible to form-
ulate a variationalprincipleincluding unknown variables which locate the surface of contact.

The overall strategy for solving the contact problem is discussed here. First, an incre-
ment in the external load or prescribed displacement is applied. Second, a contact surface
is assumed together with the points on it through which nodes of the bodies contact each
other. Also, the types of contact (sliding or non-sliding) at each of the above-mentioned
points are assumed.For the initial calculation of the first load increment, the above assump-
tions are made simply by inspection, and for the first iteration after each new load increment,
the converged solution of the previous load step is used. Third, all the necessary matrices
are calculated and assembled. At the i-th iteration of the N-th load step, incremental

- i L i =2 = ' -
displacement, 'aU  and contact tractions (Tk + ATk) are solved from a finite element

k

. -1 .
matrix equation.  Fourth, knowing the total displacement N UI< at the end of ‘the previous

loading step N-1, the total displacements N-.]Uk + 'a Uk on the boundary, and contact

tractions '(Tk + ATk) are checked to determine if they satisfy the conditions of contact.

If they do not satisfy these conditions, the location of the assumed contact
surface is modified and the procedure repeated until they do. Next, a
convergence test is made, and if the solution is not convergent, the location of the
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contact surface is further modified and the solution procedure repeated.

To determine if the solution satisfies the conditions of contact, the following
assurances are made:

(1) That nodes of either body beyond the last contacting nodes from the
previous iteration have not penetrated the other body.

(2)  That tractions at the contacting nodes are compressive. These normal
tractions can be calculated by three different methods; (a) from the
stress coefficients, (b) from the equivalent nodal forces, and (c) from
the contact tractions, g al. Here the last method was used.

(3)  That the relationship between normal and tangential contact tractions,

~)

-~
“I T + aT I
n n

1IA

IT +AT|
s s

is satisfied. Depending on which of the above checks, if any, is violated, one of the
following procedures is employed to modify the assumed location of the contact surface.

(@) If (1) is violated, the contact surface may be extended to include the
points at which penetration has occurred.

(b) If (2) is violated, the contact surface is reduced by excluding nodes
at which the tractions are tensile.

(c) 1f (3) is violated, sliding is allowed to occur.

After the conditions of contact are satisfied, a test for convergence can be made by
calculating the following quantity:

i-HAUk- i aUj I
R =|—=7
i+
aUy

where aU, is the displacement at the k-th degree of freedom. If R is less than a precribed
quantity, say 0.01, the solution is considered as converged.

EXAMPLE SOLUTIONS

The finite element model and solution scheme are applied to problems of contact
between a disk and a semi~infinite half-plane. The overall mesh pattern, the location of
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the prescribed displacement and relevant dimensions are shown in Fig. 2-a, with the area
immediately surrounding the contact surface shown in great detail in Fig. 2-b. The semi-
infinite half-plane has been modeled by a finite one with overall dimensions much larger
than those of the disk. The basic element used - is four~node quadrilateral element derived
by assuming seven g-parameters and linear displacement distribution along each edge.
Five~node and six-node elements are also introduced in transition regions between coarser
and finer meshes. Contact tractions along each contact element are approximated by linear
interpolations.

Non=Sliding Contact

Problems are solved for the case with both applied loads and prescribed displacements
at the top of the disk. In the problems, the ratio of Young's moduli are varied over a range
from 1to 1074 and slightly different mesh patterns near the contact surface are used to
accommodate. node-to-node and node-to-internode contacts. Loads or displacements are
applied by the three increments until the length of contact surface becomes about 2.4 mm.
For each increment, the converged solutions are reached with three or four iterations. For
these solutions, the best results for contact tractions are obtained when calculated from
equivalent nodal forces and are compared excellently with the Hertz solution in all cases.

Frictionless Contact With Extensive Sliding

The half disk and the semi~infinite half-plane are also used to demonstrate the capa-
bility of this formulation to solve extensive sliding contact problems. Since the contact
between the two bodies is frictionless, the solution is independent of the path; thus a Hertz
solution is again available for comparison. Solutions are obtained for prescribed displace-
ments at the top of the disk by eight increments. Stress distributions on the plane of con-
tact, for two prescribed displacements, are plotted in Fig. 3 where zero position represents
the point of initial contact. It is seen that the solution agrees almost exactly with that of
the Hertz solution. It is noted that the center of symmetry of the stress distribution moves
to the left as the half-disk slides in that direction.

Frictional Contact With Extensive Sliding

The same problem is again solved here with friction between the disk and the half-
plane as an added consideration. No solution to this problem, analytic or otherwise, can
be found; thus, results arrived at here will be justified by comparison with the results of the
previous section and by showing that they satisfy the conditions of contact.

The normal tractions at the contacting nodes between the disk and the half-plane for
every 4th displacement increment are shown in Fig. 3 and are compared with those of the
frictionless case. Because of friction, it can be seen that the displacement of the contact
surface is retarded. That the normal tractions of the plane and disk are equal in magnitude
and opposite in sign is also evident in the figure. This implies that the normal tractions
satisfy a condition of contact. A condition of sliding contact requires the ratio between
normal and tangential components of tractions to be constant and equal to the coefficient of
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friction . They were approximately verified for all contacting nodes. Finally, the con-
tacting surfaces of the disk and the plane are shown in Fig. 4 along with the locations of the
‘nodes obtained in previous solutions. It can be seen that friction retards the movement of
the contact surface, and as in the previous solution, through averaging over the entire con-
tact surface, the contact condition of no separation or penetration is satisfied.

CONCLUSIONS

(1) An incremental variational principle and a corresponding finite element
formulation have been made for contact problems based on an assumed stress
hybrid method. An iterative scheme for the solution has been developed.

(2)  Successful applications of the present method for plane elasticity problems
have been demonstrated for

(@) Non=sliding problems with node-to~node contact
and with node-to-internode contact,

(b) Frictionless contact with extensive sliding, and
(c) Frictional contact with extensive sliding.

(3)  The present method should be extended to problems involving material
and/or geometrical nonlinearities in addition to contact nonlinearity.
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BODY B

CONTACT SURFACE *

* BODY A AND BODY B INTERACT THROUGH THE CONTACT SURFACE.

Figure 1.- Contact surface.
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Figure 2.- Mesh pattern.
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Figure 3.- Normal traction on contact surface.
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Figure 4.- Location of nodes.
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FINITE ELEMENTS FOR CONTACT PROBLEMS
IN TWO~-DIMENSIONAL ELASTODYNAMICS

Thomas K. Zimmermann
IPEN, Swiss Federal Institute of Technology, Lausanne, Switzerland

Wing Kam Liu
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SUMMARY

This article summarizes some aspects of research in progress for develop-
ing finite element methods for contact problems. We propose a new''finite ele-
ment approach" for contact problems in two-dimensional elastodynamics. Sticking,
sliding and frictional contact can be taken into account. The method consists
of a modification of the shape functions, in the contact region, in order to
involve the nodes of the contacting body. The formulation is symmetric (both
bodies are contactors and targets), in order to avoid interpenetration. Compati-
bility over the interfaces is satisfied. The method is applied to the impact of
a block on a rigid target. The formulation can be applied to fluid-structure
interaction, and to problems involving material nonlinearity. The extension to
three dimensions presents additional difficulties, but it is possible.

INTRODUCTION

The approach presented in this article was developed while trying to simu-
late the movement of a gas bubble in a liquid. The original idea was to intro-
duce the compatibility of the velocities over the gas-liquid interface via a
constraint equation and to handle it by the Lagrange multiplier method. In a
second step, the Lagrange multiplier method was replaced by a penalty method,
which is easier to implement. In both cases, the constraint equation is a
geometric relationship between gas and liquid velocities. No local remeshing
was performed; the bubble and liquid meshes were simply superposed. This resul-
ted in poor pressure fields along the interface. Looking for an improvement of
this situation, remeshing appeared as the best but also the most cumbersome
solution. Alternatively, a modification of the shape functions appeared to have
the advantages of remeshing, without its inconveniences. This latter approach
is described herein as it is applied to contact problems in two~dimensional
elastodynamics. Frictional contact results in an exchange of momentum between
the two contacting bodies, and can be realised by direct introduction of a
contribution of the contactor's velocity into the target's equation of motion.
This is conveniently done by means of a modification of the shape functions, as
described in the next paragraphs.
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The proposed approach has the advantage, as compared to the Lagrange mul-
tiplier method, of maintaining a constant size of the linear system to be
solved. Compared to a penalty method, it has the advantage that we get auto-
matic compatibility of the field variables over the interface. When the
formulation is symmetric (i.e., both bodies are targets and contactors),
interpenetration is totally avoided.

MODIFIED SHAPE FUNCTIONS
FOR QUADRILATERAL FINITE ELEMENTS

Figure 1 shows a two-dimensional contact problem. Node C contacts element
(1-2-3-4) of the target and from then on contributes to its shape functions.
We start from the initial L-nodes interpolation function

4
v = > Nyv, (1)
a=1

with Na = 0.25(1+ sign(E,) £) (1+sian(m,) 1) (2)

where £, N are local coordinates, and vare the velocities.
In order to take the contribution of point C (node 5) into account, we modify

the interpolation function as follows

5
*
v = 3 Nj v (3)
az1
Notice that from a global point of view there is no new node appearing.

Obviously, a "hat shape function" at node 5 is the most adequate for our
purpose. This yields automatic compatibility of the velocities at the interface,
if a symmetric formulation is used. Further, we want to account for tangential
sliding with friction at the contact point. Therefore, we introduce a factor W
which allows the shape function at node 5 to vary in amplitude between O and 1,
which will lead to a partial exchange of momentum. The resulting shape functions
are (assuming C is on side M = + 1)

_osu(1em)[14(E-85)/(1+E5)] it E<Eg

Ny = uN =

QSu(1+n)[L{§-§J/U-§5” it E>Eg (%)

and N7 = Ny-a, N} a=1—>4 (5)
with a, = 0.5(1+sign £y gs)

The local coordinates of C are (E_,1). We can also assume, without restric-
tion, that the contact point is associdted with local coordinates (0, +1), N;
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1.

then becomes

. N¥ = 0.5 (1+7m)(1-sign(E)-E) (6)

This shape function is shown on fjgure 2. Observe that N § (gs, ns) does not
vanish at node 5 when p# 1, but Na = 1 is preserved.

In the sequel, we separate normal (n) and tangential (t) directions and
therefrom the following typical possible situations.

a.p = 1, By = 0, corresponds to frictionless sliding in the tangential direc-
tion and sticking in the normal direction. This yields

*
Nn = Na (a = l——5), the standard 5-nodes interpolation
function,

%
Nt = Na (a = 1—L4), the standard 4-nodes interpolation
function.

b.lln =1, ut =1 corresponds to sticking, and yields
N*¥ = N¥ = N (a = 1—+5).
n t a

c.bp=1, gy €101 this accounts for frictional sliding.

Since Ldepends on orientation, we introduce a second order tensor, which we
need in order to define strain rates and stresses in global coordinates.

In a local orthdogonal frame tangential to the target surface we write

V‘T 0 l“l't vc (T)

where the superscripts T and C stand for target and contactor, respectively, and
the subscripts n and t for normal and tangential.

. Equation (7) defines the contribution of node 5 (contactor) to the target
velocity while the true local veloecity, at C, is given by

. _ -1 if E<O
sign (8) = ] j; E>0
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wlos N ] [v:] (8)

acl .
where' vi b= [VJ VJ J (9)
vh = lv:n v:t v;n v;‘ ....... th Vs(,:n Vsct T (10)
and [N;] is defined as follows++
[Ng]=Ng [u7] (11)
[N2] =N [1]-eq[N]] (12)
ny_ [Hn 0]
[+"] [0 " (13)

=o 7] -

The matrix Nn is diagonal when defined in a local referential, tangential
to the contact sufface. It does not induce a coupling of the normal and tangen-—
tial components, but this would not be true in a global referential. We can,
therefore, establish the stiffness in this local referential and rotate the
element matrix before we assemble the elements. Alternatively we can make the
derivation in a global coordinate system.

In practice, the whole effort essentially reduces to minor changes in the
shape function routines.

TRANSIENT SOLUTION PROCEDURE
Search Algorithm

We need to determine at each time step the location of each node of each
body in the contact zone with respect to the mesh of the other one. For that
purpose a connectivity matrix is established in the input phase; this matrix
lists all elements connected to each element. Assuming the time step to be
small, we memorize the previous position of each node (by an element number),
and search for its new position in adjacent elements. A 2-dimensional search
path is shown on figure 3. Once the new position is known, we modify the
shape functions of the target element as described in the previous paragraph
and compute the updated stiffnesses.

+ T as superscript of a matrix stands for transpose
Tt o depends on the local coordinate of the fifth node
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Predictor-Corrector Algorithm

We adopt here an explicit predictor-corrector algorithm, defined by the
following equations, at time step (n + 1) (see ref. 1, 2 for details).

Man,y + N(dn., .Zn.1)=fn.1 (15)
an =!n+At(1'Y)§n (17)
doyy =dna + A2 3, (18)
Voo = V¥n.u t Atyvan, (19)
do =10 (20)
Yo =X (21)
3, =M (F-N(dg. o)) (22)

Equations (16) and (1T) are predictor equations (upper tilda), (18) and (19) are
corrector equations, (20) to (22) are initial conditions, and N 1is a nonlinear
algebraic operator’. The implementation procedure can be found in (ref. 1).

If frictional contact occurs, we need in addition a predictor equation for
u Because of lack of space, this is not developed here. For the time being
we a opt

T (23)

NUMERICAL RESULTS

The analysis of an impact of a rectangular block on a rigid surface is
performed (see ref. 3, for comparison). Figure L shows the mesh. The data are

density p=0.01
modulus of elasticity E = 1,000
Poisson's coefficient v=20.3
dimensions L. = 9.9
time step At = 0.002725

t+ If variables are to be memorized at element integration points, as often in
nenlinear problems, remember that these are moving when node 5 moves.
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Newvmark parameters Y = 0.5 B=0.25
(explicit predictor-
corrector algorithm)
initial velocity Vo =1
0.5
wave velocity Ce ={[E(1-V)T1/[(14v)(1-2Vv)-p]} ™ = 366.9

The time step is defined by the transit time for a dilatational wave to
cross one element. The impact takes place at t = 0. Frictionless contact is as-
sumed (ML,= 0). This is introduced via isclated nodes, as shown on figure lLa.
For the purpose of testing the new formulation, both node-to-node and distinct
nodal positions are tested and yield the same results.

The anticipated solution is shown on figure 4b. This exact solution has
two constant zones separated by the dilatational wave front emanating from the
initial impact. The circular wave front is a result of reflections off the free

boundary.

During the early steps of the computation, stresses in zone IT are obtain-
ed from the impulse equaticn applied to a one-dimensional situation (O==c-p-vo)
Stress results shown on figure 5.a confirm the validity of the new approach.
Some overshoot appears, however, in the stress results of the lowest row of
elements, probably due to the absence of a discrete impact condition in the
algorithm. The deformed configuration at t = 0.0218s.is shown on figure 5b.

CONCLUDING REMARKS

A new approach to contact problems involving friction in two-dimensional
elastodynamics is proposed in this article. The basic idea obviously shows some
analogies with local remeshing techniques, like the one proposed in (ref. L).

The treatment of friction via modified shape functions seems similar to the
lines of thinking adopted in (ref. 5) for the treatment of shock waves.

The proposed formulation is symmetric (both bodies are contactor and tar-—
get for each other) and satisfies compatibility of velocities over the contact
interface (when possible), thus avoiding interpenetration. Completeness of the
modified elements remains satisfied. Although no detailed comparison with dif-
ferent approaches has been made as yet, the following advantages can be men-
tioned : constant size of the system of equations (not true for local remeshing
or Lagrange multiplier approach, important if an implicit solution is performed)
and interface compatibility (not true in general for Lagrange multipliers or
penalty methods).

The extension of the method to several contacting nodes per element is
possible, but it is not trivial. The extension to contact problems in three
dimensional space and inclusion problems in 2-D is possible, but at the cost
of losing interface compatibility. As already mentioned, nonlinear analysis may
present minor difficulties because of the fact that integration points can move.
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Further research is needed on the predictor algorithm for sliding with friction
and impact-release conditions have to be added.

Qur main effort, at present, is directed towards testing the approach in
problems involving friction.
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Figure 1.- Contact prcoblem.

Figure 2.~ Modified shape functions.
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Figure 3.- Search path.
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(a) Finite element mesh.

(b) Wave front diagram.

Figure U4.- Impact of rectangular block on a rigid surface.
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SUMMARY

The objective of this paper is to develop a more accurate procedure for
the determination of the inelastic behavior of structural components. For
this purpose, the actual stress-strain curve for the material of the structure
is utilized to generate the force-deformation relationships for the structural
elements, rather than using simplified models such as elastic-plastic,
bilinear and trilinear approximations.

Force-deformation curves in the form of universal generalized stress-
strain relationships are generated for beam elements with various types of
cross sections. In the generation of these curves, stress or load reversals,
kinematic hardening and hysteretic behavior are taken into account.
Intersections between loading and unloading branches are determined through
an iterative process.

Using the inelastic properties determined in this study, the plastic
static response of some simple structural systems composed of beam elements
is computed. Results are compared with known solutions, indicating a consi-
derable improvement over response predictions obtained by means of simplified
approximations used in previous investigations. The application of this
procedure to the dynamic load case is currently in progress.

INTRODUCTION

Structural systems analyzed and designed for traditional loads and
materials have been observed to undergo inelastic deformations when excessive
load conditions are experienced. It is, therefore, an established fact now
that inelastic deformations do occur in structures and are considered in the
analysis in order to produce more economical and safe designs. For example,

a generally accepted philosophy in the seismic analysis and design of struc-
tures is that .a structure should remain elastic during earthquakes of small
intensity that occur frequently; it should undergo limited plastic deformations
during earthquakes of moderate intensity; however, it may undergo large plastic
deformations but without major collapse during earthquakes of relatively high
intensity that occur infrequently.

*#This study has been partially supported by the National Science Founda-
tion Research Grant No. PFR-79-16263.
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At the same time, advances in naval, aerospace and nuclear reactor
technology has led to the use of new materials such as stainless steel, alloys
of aluminum and nickel, reinforced plastics, etc. The stress-strain curves
for these materials are generally nonlinear. Therefore, an economical design
of structures composed of such materials requires an accurate knowledge of the
magnitude and distribution of the stresses and strains, as well as, the
displacements. In all cases the effect of nonlinearities must be considered

in the analysis.

In the study of the inelastic behavior of structures various idealizations
to the actual stress-strain curves or force~deformation relations have been
employed. The most extensively used model is the elastic perfectly plastic
representation, principally due to its simplicity. When unloading occurs,
this model neglects the strain hardening and Bauschinger effects. In general
it produces conservative results and is mostly suitable for mild steel
structures. Bilinear models with a nonzero slope for the inelastic branch
have also been used widely. These models allow for the consideration of strain
hardening effects (both isotropic and kinematic) due to loading and unloading
cycles arising from static and dynamic loads. A trilinear model has also been
used to simulate the stress—-strain relationship of the material under static
loads.

Simplified models often perform satisfactorily in predicting the inelastic
behavior of special classes of structures. However, for general types of
structures, an accurate representation of the stress-strain or force-
deformation properties are needed for both the loading and unloading branches
in the form of curvilinear or multilinear (piecewise linear) relations that
follow as closely as possible the actual behavior of the system.

In the present study an accurate procedure is considered for the determi-
nation of the inelastic behavior of structural components. For this purpose,
the actual stress-strain curve for the material of the structure is utilized
to generate the force-deformation relationships for the structural elements,
rather than using simplified models, such as elastic-plastic, bilinear and
trilinear approximations. Applying this process to frame type structures,
force-deformation curves in the form of universal generalized stress-strain
relationships are generated for beam elements with various types of cross
sections. In the generation of these curves stress or load reversals, more
realistic strain hardening properties and hysteretic behavior are taken into
account. Intersections between loading and unloading branches are determined
through an iterative process. Based on the rather accurate force-deformation
relationships of the individual elements, the governing equations for the
structural system are established and used to compute the inelastic response
of the structure.
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GOVERNING EQUATIONS

Application of the Hamiltonian Principle to discrete systems in the
context of the finite element method yields the basic dynamic equations
governing the behavior of the structural systems. In matrix form these
equations can be expressed as (ref. 1) '

[m] (@} + ([K] + [KgD{q} = {F} + {F°} (1)
where [m] = consistent mass matrix of the structural system.
[K] = elastic stiffness matrix of the structural system.
[KG] = geometric stiffness matrix of the structural system.

{q} = vector of displacements at the structural degrees of freedom.
{a} = vector of accelerations at the structural degrees of freedom.

{F} = generalized nodal force vector corresponding to externally
applied loads.

o . . .
{F"} = equivalent generalized nodal force vector due to plastic
strains, computed in accordance with the initial stiffness

method.

In case of static loading the above equations take the form of

([K] + [K.]) {q} = {F} + {F"} (2)

PLASTICITY RELATIONS

Stress—-Strain Curve

An experimentally determined virgin curve of the material is in general
curvilinear. Starting with the experimental stress—-strain data analytical
expressions can be obtained to represent this data. Such expressions can be in
the form of algebraiec or other types of polynomials, exponential functions, or
the widely used curvilinear relationship known as the Ramberg-Osgood approxima-
tion represented by

g g R-1
€=% [1+D<0—) ] (3)
y
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in which € and o are the unit strain and unit stress, respectively, E repre-
sents the modulus of elasticity, o, denotes the yield stress of the material
and D and R are real constants to be determined. However, this relationship
is not explicit in stresses and, therefore, numerical procedures are needed to
find the stresses corresponding to given strains. On the other hand, if the
stress—strain data cannot be represented by an analytical expression, the
curve is approximated by a series of line segments given by

(4)

= + - <
o=o0, +k (e si) » &y < e <€,

where, (0.,e.) are the stress-strain values at the beginning of the ith segment
and kiqq is the slope of the line segment between the points (oi,ei) and

(Oi+l’€i+1) expressed as
o -0
i+1 i .
ki+l =21—T€—1 , 1=0,1,2, . . ., (n-1) (5)
i+l i

where n is total number of segments used to approximate the curve.

Moment-Curvature (Force-Deformation) Relationship

Figure 1 shows a general elasto-plastic doubly symmetric cross section of
a beam member. A linear strain distribution over the depth of the cross
section up to ultimate behavior is assumed. Tensile stresses are considered
positive and curvatures causing positive strains at bottom fibers are also
positive. The x- and y-axes are the principal axes and the z-axis is the
geometric centroidal axis of the cross section. The bending moment acting on
the cross section is the sum of moments of the stresses acting on the cross
section about the geometric centroidal axis, i.e.

M= /0 vdA (6)

A

in which dA is an element of area. The integration is carried over the elas-
tic and plastic parts of the area. Usually the stress-strain curve of the
material cannot be represented explicitly for stresses; therefore, a numerical
integration procedure is employed. For this purpose the section is divided
into a series of rectangular slices, and the contribution of each slice to the
moment acting over the cross section is found. Before indicating the details
necessary for accomplishing this, certain definitions need to be established as
follows. If €ys €y and o, are the yield strain, ultimate strain and yield
stress, respectively, as observed in a tension test on a material and h is the

distance to extreme fibers from z-axis, then
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M =0 I/h=o0 S 7)

where My, I, S are the yield moment, moment of inertia and section modulus
of the section, respectively. The yield curvature ¢y is obtained from

¢, = M /E T, (8)

Based on the assumption of a linear strain distribution over the cross sectlon
of the member, the ultimate curvature ¢ is given by

¢y = Eu/h 9

In the present study the curvature range between by and ¢, is divided into
a suitable number of intervals to give enough data p01nts to fit a curve.
The strain € at the center of ith rectangular slice, assumed to be uniformly
distributed “over the slice, corresponding to a curvature value ¢j is given by

€. = . ¥, (10)

where y; is the distance to the centroid of the ith rectangular slice from the
centraidal axis of the cross section. The strain g4 in the ith slice due to
curvature ¢j, at the jth discrete point along the member, is used to determine
the stress o; assumed to act uniformly over the entire slice, from the stress-
strain relationship as discussed previously. If A; is the area of the ith
slice, the force acting on the ith slice is given by

Fi =0, Ai (11)
The moment of the force about the neutral axis is obtained from

Mi = Fiyi (12)

By summing over the total number of slices used to model the cross section, the
total internal moment Mj on the cross section corresponding to a curvature ¢,
is expressed as J

NS NS
M. =% M, =12 9o, A, Yy, (13)
S

where NS is number of slices and j represents a typical discrete point along
the member. Similarly the total internal axial force P at the cross section
due to a prescribed strain field ¢ is obtained from

NS

PeI oy b (14)
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Equations (13) and (14) directly yield force P and moment M corresponding to
a prescribed deformation field. However, to get the deformation corresponding
to a given load history, equations (13) and (14) have to be solved iteratively.
The moment curvature data generated through the use of equation (13) is then
presented explicitly for curvature by a polynomial of the type
N .
¢ =M/EL+ £ cC, M (15)
i=1

where Ci are the polynomial coefficients to be determined and N is degree of
the polynomial. Alternatively, an equation of the Ramberg-Osgood type

® = &

can be fitted in which D and R are the real constants to be determined.

M R-1
[ 1+ D(M/My) ] (16)

Normalized Moment Curvature Relationship

The moment-curvature data generated from Eq. (13) is normalized by
using the quantities My and ¢y, so that

M= M/My (17)

¢ = ¢/¢ (18)
y

where M and $ are normalized moment and normalized curvature, respectively.

The normalized curvature is then separated into its elastic and plastic

components ¢e and ¢p, respectively, so that solving for ¢p

b, =0 - 8, (19)
Since ¢e = M/EI, based on equation (17) the normalized elastic curvature is
written in the form

b, = M (20)

Based on the normalized plastic components of curvature computed from
equation (19), a polynomial of the form

N .
$ = I d, Mt (21)
P 4=

is then fitted to approximate the data, where the di's are constants to be
determined through regression analysis. Alternativély, an equation of the type
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is also used to represent the data. The real comstants D and R are determined
by taking the logarithmic form of Eq. (22), so that
In Ep =InD+R1n M (23)

This is an equation of a straight line. Constants D and R are determined from

linear regression analysis using the data for 1In ¢P and 1n M.

Using equations (19), (21), and (22), the following moment—curvature
relations can now be formulated

b =M . M<1 (24)

- - N -1 -

p =M+ & d. M , M>1 (25)
i=0

S =M+ AM =% [1+ Al , fis1 (26)

Slope of Generalized Stress-Strain Curve

A universal stress—-strain curve usually represents the relationship

between EP and M expressed by Eqs. (21) or (22). Rewriting these equations in
differential form and solving for the slope K, yields

= 1
RZ = §M§ = (27)
de N ,
r id, m D
i=1 t
and RZ = dg = —l(R—l) (28)
d¢P AR M

. —-P y . . .
If a smooth analytical expression to fit the ¢ - M data is not possible with-
in tolerable limits of accuracy, the slope K, of the universal stress-strain
curve is obtained as a series of approximate tangents drawn at discrete points

representing the data, i.e.
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= _ i+l i
®)y =% = (29)
i+l
where 1 and i+l are typical discrete points.

In eqs. (21), (22) and (24)-(29) the cross section is assumed to be
subjected to a bending moment about the centroidal axis. However, in practical
cases, structural elements are generally subjected to stress resultants acting
in different directions. To extend the applicability of the above procedure,
it is assumed that similar relationships exist between the effective stress
f* and effective strain 0% in a multi-axial stress case. The function f* in
normalized form is also identified with the yield function.

Yield Function

When stress resultants in normalized form (instead of unit stresses) are
considered to be generalized stresses in the context of plasticity theory,
yielding at any section of a member is then assumed to occur when the critical
combination of generalized stresses initiate inelastic deformations at that
section. The yield function is expressed by an equation of the form

££(Q;) = Y (30)

where Qi are the generalized stresses and Y is the initial yield value. To
make the yield function independent of the cross section, the yield function
equation is derived in terms of normalized (dimensionless) force parameters.
A force component is normalized by its corresponding characteristic value
(usually the value at first yield). In normalized form equation (30) takes
the form of

£5(Q) = 1 (31)

For a space frame member the cross section is subjected to a generalized force
vector S having 6 components, so that

= s 32
{s} {P_, vy, Vo MM, M ] (32)
where

Px = axial force
Vy’ Vz = direct or transverse shear forces
M, M = Bending moments

X y
Mz = Twisting or torsional moment
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Each of these forces influence the yield behavior at a cross section and the
inelastic response depends upon the interaction between them. In the past,
elliptical, parabolic, spherical (ref. 2) and other forms of yield functions
have been used in inelastic analysis of structures. 1In the present study

a spherical yield function is used as indicated below

2 2

2 2
£ = PL +(M_X_ +(EL) + (MZ =Y (33)
POX MOX M M

oy oz

in which Y denotes the normalized yield value which may change during straining
and P , M , M and M are the characteristic values of axial force,
ox’ ox’ oy oz

torsional moment, and bending moments about y and z axes, respectively.
Similar expressions can be written for a plate element (ref. 1).

The above yield function can be used in conjuction with an average force
model (refs. 1, 3) which assumes that an element undergoes plastic deformations
if the loading function f* determined from average values of stress resultants
acting at the member ends exceeds the current normalized yield value.

Flow Rule

A flow rule expresses the relationship between plastic strains and
stresses. In the present study rather than solving the flow equations
rigorously in terms of stress resultants, an approximate procedure (refs. 1, 3)
is employed. 1In this method if f*est is the plastic potential at the end of

a load increment in dynamic analysis (computed using member forces Pi

est
obtained from an elastic analysis), then the increment of plastic potential
df*_  for an element already undergoing inelastic deformation is obtained from
the equation

* * *

dfl = fest - fprev (34)

*
where fprev is the plastic potential at the end of previous load or time

increment. For a transitional element the equation for the increment of
plastic potential is of the form

df. = f - f (35)

where fo* is the initial yield value.
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As shown in detail in reference 1, the correct value of the plastic
potential increment df* can be computed from the relation

K
* : *
ar” = —2— af, (36)
1+ K2
*
The current corrected value of the plastic potential fCurr is them obtained as
* - s %
curr prev + df (37

for an element already undergoing plastic deformations and

*
£ = fo + df* (38)

for an element entering the plastic range.

*
With the known value of the plastic potential f , the final values of member
(element) forces are computed by a proportioning procedure represented as
(refs. 1, 3)

P, =P fcurr (39)

The overall numerical procedure utilized in the computation of the element
and structural responses is the same as the one outlined in references 1 and 2.

NUMERICAL RESULTS

To determine the feasibility of the proposed method, two structures for
which results are available in the literature were analyzed and the results
were compared with the works of other investigators.

Example 1 — The first example considered consists of the simply supported
beam with the I cross-section and material property, as shown in figure 1.
The given stress—-strain curve corresponds to material B as defined by
Chajes (ref. 4) who had originally studied this structure. As in the case of
the above reference, the stress-~strain curve is idealized by a bilinear
relationship. This is then utilized to obtain the moment curvature and the
normalized universal stress-strain curves, as depicted in figure 2.
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Subsequently, the response of beam when subjected to either a concentrated
load at its midspan or a uniformly distributed load over its entire length

is obtained. It should be mentioned that Chajes (ref. 4) has presented

a "closed-form'" solution for the deformation characteristic of the midspan

of the beam when subjected to a concentrated load. However, his solution is
based on the assumption that only the flanges resist the bending moment. 1In
figure 3 are shown the deflection responses of the midspan as obtained in this
study as well as that reported in reference 4. As can be observed, close
agreement between the two sets of data is exhihited.

Example 2 - As a second example, a pin-based portal frame studied, both
theoretically and experimentally, by Takahashi and Chiu (ref. 5) is analyzed.
The structure consists of W12X27 sections, arranged to deform around their
strong axes. The geometry of the structure and its loading are shown in
figure 4a. The idealized structure and the equivalent nodal loading is shown
in figure 4b. Note that the effect of the girder depth has been taken into
account by introduction of an additional equivalent load and a bending
moment at the top of the loaded column. In the analysis, a curve is fitted to
the stress-strain relation for the mild steel with an average yield stress of
255 MN/m? and modulus of elasticity of 203.5X103 MN/m2. This is then used
as a basis for determination of moment-curvature relationship for the structure.
In figure 4c is shown the horizontal deflection response of the top of the
unloaded column. Again, close correlation is observed.
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NONLINEAR FINITE ELEMENT ANALYSTS - AN ALTERNATIVE FORMULATION

Silvio Merazzi¥*
Ecole Polytechnique Fédérale de Lausanne, Switzerland
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SUMMARY

A geometrical nonlinear analysis based on an alternative definition of
strain is presented. Expressions for strain are obtained by computing the
change in length of the base vectors in the curvilinear element coordinate sys-—
tem. The isoparametric element formulation is assumed in the global Cartesian
coordinate system. The approach is based on the minimization of the strain en-
ergy, and the resulting nonlinear equations are solved by the modified Newton
method. Integration of the first and second variation of the strain energy is
performed numerically in the case of two- and three—dimensional elements. Ap—
plication is made to a simple long cantilever beam.

INTRODUCTION

The nonlinear finite element formulation described here represents a part
of the development of the BASIS finite element analysis system (ref. 1). The
basic idea was to combine linear and nonlinear behaviour in order to deal more
efficiently with structural analysis. Thus, nonlinear elements had to be devel-
oped which fit into an existing system without loss of general validity. The
Lagrange formulation has therefore been chosen (ref. 2), expressing the dis-
placement variables directly in the global Cartesian coordinate system,
although locally, for practical purposes, & skew coordinate system may be pre—
scribed. The advantage of this formulation is the numerical method arising from
it. By adopting the modified Newton method (ref. 3, 4) a clear solution process
has been chosen, therefore minimizing errors due to a wrong understanding of
nonlinear behaviour. The stralns can be adapted to the nonlinearity of the
problem. This feature may considerably reduce the computational effort.

* Research sponsored in part by the Swiss National Science Foundation (contract
No. 2267-079) and the National Swedish Board for Energy Source Development
under contract No. 5061-012.
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A set of one—, two- and three-dimensional elements (in terms of curvilin-
ear coordinates) can be derived from this formulation (Fig. 1). The elements
presented here are based on the isoparametric approximation (ref. 3). One—di-

~mensional elements are well suited to deal with cable and truss problems
(ref. 5). Membrane and volume elements are mainly used to model elastic com-—
posite structures.

GOVERNING EQUATIONS

Consider a point P of the undeformed body (Fig. 2). The corresponding
cartesian coordinate vector {r} may be expressed as a function of the body's
curvilinear coordinates O

{r} =

i

{r}¥, (6" (1)
:

e~

where Tl are the interpolation functions of the corresponding nodes. The base
vectors at P are obtained by deriving {r} with respect to the coordinates G

_ 9{r}
{g}a = aea (2)

For practical purposes, Eq. 2 can be rewritten
= |A
{g}a [ ]a{S} (3)

[Aly contains all functions W o 2nd {s} all Cartesian components of the node
vectors {r} s

In order to define the strain energy the metric tensor at P

= {g}a-{g}B a=1,3; B=1,3 (4)

and the infinitesimal volume

av = det(gae) + 30! « 0% «30° (5)
are needed. In the deformed state the base vectors become (Fig. 1)

_9_

{G}a N 00

e

: 1({r}iWi'F{u}iTi) (6)
Eq. 6 may be rewritten

{G}oc = [A]a - {a} +{g}a (7)

where {d} contains, similar to {s}, all Cartesian components of the node
displacements. The metric tensor of the deformed body at P becomes

G

o8 {G}a - {a} (8)

B
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Substituting Eqs. 3 and 7 in Eq. 8,
AT T -
Gyp = {4} [D]aB{d} + {d} ((D]a8+[D]Ba){s} * 848 (9)

with

D] . = [A]fL . [A] (10)

aB B

The strains are now defined as the relative change of the base vectors:

I{G}a + {G}BI - [{g}a + {g}BI

EOLB = — (11)
I{g}a+ {g}B[
or "o, 0 g, v, ]
00,
€ = (12)
oB 8o, +2g B+g88 J

Eq. 12 can be expressed in terms of {d}

ol

T {a)t [D1 _({a} +2{s})

€ , = af + 1 -1 (13)
ofB -
€48 —
with _
[D]as = [D]w + [D]aB + [D]Ba + [D]BB (14)
88 = Euo * EgaB * ggg (15)

Eq. 13 defines the strains SaB used to derive the numerical equations from the
strain energy.

Note here that if the deformations are limited in size the root in Eg. 13 can
be expressed as a series expansion according to

M e

- 1
(xa8+1) -1+2xa6+... (16)

Retaining only the first two terms of Eq. 16 leads to the quadratic approxima-
tion o —
{a}"Ip1 _,({a} +2{s})
v _ o
€, = — (17)
aB 5
gaB

from which the linear solution may be obtained.

Assuming linear elastic behaviour, the variation of strain energy leads directly
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to the nonlinear equilibrium equations of the element.

For ease of formulation the strains €y 2re rewritten in vector form, {e} =
{€11 5€22 €33 €12 » €13 »E23}. Furthermore, as the stress-strain relations are
mainly formulated in a rectangular coordinate system the strain 1s transformed

by
{y} = [Tl{e} (18)

The transformation matrix [T] is constant if the scalar products of the base
vectors in the undeformed and in the deformed system are the same.

The strain energy density then becomes

au = 3 (o} -{0o ) EI ({7} - {yeDav (19)

% ({e}T[TJT{E] —{oo}T) [Ti{e}av (20)

or au

Eq. 20 is then integrated over the element. For one—-dimensional elements an
analytical solution is possible (ref. 5), whereas for two- and three—dimen-
sional elements numerical integration must be performed. Using Gaussian inte-
gration the strain energy becomes

ne
(VYN

He~1B

(21)

T T T
U ({s}k[T]k[E]-{oo}k)[T]k{ek}gkwk

1

1

where Ve designates the weight factor at the corresponding point @; .

The set of nonlinear equations for one element is directly obtained from the
first variation of the total potential energy with respect to the global vari-

ables
ouU
g.(u.) = — =1, (22)
1] Bui 1
{f} denotes the vector of external loads. It is worth mentioning here that in
the case of dynamic analysis the equilibrium equations can also be obtained by
applying Hamilton's principle and a suitable operator for discretization in

time.

After rearrangement, Eq. 22 becomes

m —
{a} = ] (e}y[B) - 2 {og}}+[T1))-[P] +g +w_ (23)
k=1
o {q} = ? {—}T'[P] g * (24)
4 e Ol & Yy 2
with (P17 = [{p} ] @ =1,3; B=0,3 (25)
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and —%
(p} =08 . [D] " ({u} + {s) (26)
%16

In order to solve Eq. 22 by the modified Newton method the Jacobian of {q} is

needed:
- 32y —_
ou. ou.
i3

[X]

1]
t~1

T_
[P]k°[E]'[P]k +

- -3
oaB(XaB-+1)

1 —
L] D — 0 =1 - =a 2
{ [ ]aB {p}as {p}as} a=1,3;8=a,3 (27)
gaB
For a set of several elements the stiffness matrices [K] are assembled to the
global stiffness matrix and factored. Using the modified Newton method the n-th
iteration becomes

-1
{a)_,, -{a}_ = g1, ({£} - {a} ) (28)

[K] being factored at iteration step £ £ n. The relaxation factor is computed
using an extrapolation method for each iteration (ref. 5). Thus the final load
level is reached stepwise, and for each new load step the solution is extra-
polated quadratically. Convergence criteria are based on the Euclidean and
maximum norms {(ref. 6).

The computational procedure is essentially the same for all element types. How-
ever, for one-dimensional elements {gq} and [K] can be determined analytically
in terms of u. , and the transformation [T] is not necessary. The [T] matrices
for two- and three-dimensional elements are listed in the Appendix.

During the first assembly of [K] the [D}, [Tl, [E] matrices as well as the
geometry parameters 208 and g are computed once for each Gaussian point and
reused for further computations of [K] and {q}. For each iteration step {e}

and [P] are evaluated at each Gaussian point and the global {q} vector as-
sembled. The global load vector contalns not only extermal forces but also the
first variation coming from linear elements. In fact, their contribution has to
be evaluated only once for each load step, thus reducing the computing time.
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NUMERICAL RESULTS

An application of the theory is demonstrated using results obtained by the
BASIS computer program (ref. 1). A long thin cantilever beam (Fig. 3) has been
idealized by 8-noded membrane elements. Its length is 1000 mm, height 10 mm and
thickness 1 mm. The elastic modulus is 3000 N/mm® and the Poisson ratio 0.36.
The beam is subjected to a load case consisting of a variable locad Q at the
node A and a case with constant Q and variable compression load P. Since the
strains remain smaller than one in this example differences in the results are
not detectable when using Eq. 17 instead of Eg. 13. The convergence criterion
during iteration (Eq. 28) is based on the relative change of the displacement
vector norm and has been set to 0.0001. The active load is applied stepwise. If
convergence is rapid, the step 1s automatically increased. However, for highly
nonlinear problems, it is preferable to recompute and refactor the stiffness
matrix when the iteration diverges rather than to decrease the load step. The
first and second variation of U has been computed using 2 by 2 Gaussian inte-
gration. Fig. 4 shows the load-displacement function at node A for transversal
loading, and the same function for the divergence problem is exhibited in Fig.5.
Note the good behaviour of the two-element approximation even for large non-—
linearities.

To conclude, it should be mentioned that the problems currently being in-
vestigated include the influence of the integration order on numerical accuracy
and convergence behaviour as well as the nonlinear creep of structures.

SYMBOLS

Vectors are symbolized by {}-brackets and matrices by []-brackets. []F
means transposed matrix, []-1 inverted or factored matrix, and & stands for
dyadic product. Greek indices refer to the curvilinear coordinate system.

[A]u matrix of form functions of curvilinear coordinate @a
[D]uB product of form function matrices (Eq. 11)

{a} nodal displacement vector (global Cartesian components)
{e} strain vector, contains components €8

[E] elasticity matrix

8,8 metric tensor of the undeformed body

GaB metric tensor of the deformed body

{g}a base vector of the undeformed body, coordinate %
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{c}
a

{y}
{yo}
[X1]
[P]

{q}
{r}.
1
{s}
{o}
{oo}
[T]

{ul}.
i

base vector of the deformed body

determinant of the metric tensor gaB

strain vector in the local Cartesian system

initial strain vector in the local Cartesian system
second variation of the strain energy (stiffness matrix)
matrix defined in Eq. 26

interpolation functions for geometry and displacements
first variation of the potential energy

global Cartesian coordinate vector of node i

vector containing all Cartesian node coordinates

stress vector in local Cartesian system

initial stress vector in local Cartesian systen
transformation matrix relating {e} to {y} (see Appendix)
curvilinear element coordinates

global Cartesian displacement at node i

straln energy

weighting factor for Gaussian integration

orthogonal Cartesian coordinates

expression defined in Eq. 13.
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APPENDIX

The strain is always transformed to a Cartesian coordinate system defined
by {v} = {r}, - {r}, for two-dimensional elements and by {v} and {rl, for three-
dimensional elements. For membrane elements, [T] becomes

_1__1_ _ . —=
[Tl 5 [E1-+cos2¢a 5 1 c052¢a ,251n¢acos¢a%l a=1,3

{v} - {g},
¢ {et |

cosd

For volume elements the six straln components are transformed similarly.
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Figure 1l.- Two- and three-dimensional elements.
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Figure 3.- Deformation of cantilever beam under transversal load Q.

1.0

—— 5 ELEMENTS
2.9 |

N1

A 2 ELEMENTS
8.8 {_

LOAD Q

8.7

8.6 |-

2.5 |-

8.4 L

8.3 L.

a2 |

-408 -208 [} 200 408 688 088
DBISPLACEMENTS [MM]

Figure Y4.- Load-displacement function at
node A under transversal load Q.

260



8.7

IN]

8.6

.5

LOAD P

8.4

8.3

8.2

8.1

B \«— X-DISPL.
L
<— Y-DISPL.
| 1 | | |
-40 8 40 88 128 1608

DISPLACEMENTS [MM]

Figure 5.- Load-displacement function at node A

under axial compression P.

261 .






COROTATIONAL VELOCITY STRAIN FORMULATIONS FOR NONLINEAR
ANALYSIS OF BEAMS AND AXISYMMETRIC SHELLS*

Ted Belytschko
Department of Civil Engineering
Northwestern University, Evanston, Illinois

H. Stolarski
Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland

C.S. Tsay
Northwestern University

SUMMARY

Finite element formulations for large strain, large displacement problems
are formulated using a kinematic description based on the corotational compo-
nents of the velocity strain. The corotational components are defined in terms
of a system that rotates with each element and approximates the rotation of the
material. To account for rotations of the material relative to this element
system, extra terms are introduced in the velocity strain equations. Although
this formulation is incremental, in explicitly integrated transient problems it
compares very well with formulations that are not. Its simplicity, and its com-
patibility with constitutive equations found in "hydro" codes make it very
attractive for this class of problems.

INTRODUCTION

Nonlinear structures are conventionally treated by kinematic descriptions
that are essentially Lagrangian in nature, in that the measure of deformation
is directly related to the total displacements. Several types of Lagrangian
formulations are frequently used: formulations based on the Green strain or
Almansi strain [1,2] and formulations based on corotational stretch [3,4].

Although velocity strain formulations have been used extensively for non-
linear solids, as exemplified in the work of Key [5], little study has been made
of the application of these formulations to structures. Hughes and Liu [6]
have presented a formulation based on the global components of the velocity
strain.

In this paper, a corotational velocity strain formulation will be presented
in which the components of the velocity strain are expressed in a framework
that rotates with the material; formulations of this type have been studied by
Green and Naghdi [7]. The formulation is then specialized to finite elements

*This work was supported by the Electric Power Research Institute.

263




by assuming that the rotation within an element is either constant or that the
variation in the rotation field is small or moderate.

The potential benefits of these methods are significant. The basic equa-
tions are simpler than Green strain or Almansi equations, which endows the re-
sulting computer programs with both simplicity and speed. The stress conjugate
to the corotational velocity strain is the Cauchy stress tensor expressed in
the corotational system. Any constitutive equations based on Cauchy stress and
velocity strain can therefore be used. Furthermore, the corotational stress
and stress-strain matrix are both materially objective, so no Jaumann type cor-
rections need be made for the stress state and the formulation is directly
applicable to anisotropic materials, which is not true of the formulations
given in [5] or ([8].

In the next section, the fundamental equations for the corotational velo-
city strain formulation are presented. Next, the general equations for a fi-
nite element application of this formulation is given. In orxder to illustrate
the simplicity of the method, we then give the formulation for a beam element
assuming a constant rotation in the element. More complex relations which ac-
count for the variation of rotation in an element are then given. The last
section gives some examples of the application of this method to nonlinear
transient problems.

BASIC EQUATIONS

We will use a kinematical and stress description by Green and Naghdi [7].
Let us denote the material coordinates of the structure by X., the spatial co-
ordinates by xj, the displacements by uj and the velocities by v;. Then

u, = x, - X. (1)

and the deformation gradient Fij is given by

ox.
_ i

Fis © &, (2)
j

From the polar decomposition theorem (see [9]) it follows that the deformation
gradient can be expressed as a pure deformation, which is expressed by a sym-

metric matrix Ukl’ and a rigid body rotation Rkl in the form

(3)

Fis = Ry Uiy
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The rotation matrix R;j is orthogonal, so that

R.., R, = 8§ (4)

where 6lm is the Kronecker delta.
We will denote the coordinate system which is rotated by the rigid body

motion of the material by §i and call it a corotational coordinate system.
This system is related to x; by

X, = R. x. (5)

and its orientation varies from point to point in the material.
The velocity strain (rate of deformation) tensor is given by

BVi
D =

= (—LX 4+ 3
15 2 (axj + axi) (6)

and the corotational velocity strain, which is simply the same tensor with its
components expressed in the corotational coordinates, is given by

Per T Rix Ryp Piy 7
or

. 3\?

fe = Ll ) (®)

The state of stress will be represented by the corotational stress T,
which are the corotational components of the Cauchy (physical) stress T,
the two are related by 3

T = R, R,, T.. (9)

k1 ik 38
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The corotational components of the stress are frame invariant, so that the
velocity strain is related to the rate of corotational stress by

~ A A~
Ti5 = Sisk1 P (10
where the matrix C, . for a 'material depends on the state of stress and

state variables sudH as the yield stress but is independent of material rota-
tion, regardless of whether the material is isotropic or anisotropic. This is
a key advantage of corotational formulations. If the velocity strain and
Cauchy stress are expressed in a fixed coordinate system, a Jaumann rate is
required to provide frame invariance, but more importantly, the matrix CdjkIHMSt
also be modified to account for the rigid body rotation. Furthermore, such
formulations are quite awkward in structural theories where it is often conv-
venient to distinguish velocities tangent and normal to the current configu-

ration.

For a material in the domain ), the rate of internal work is given by

>
>

W o= I D.. T.. A} = J' D,. T,. dQ (11)
q i3 i3 q 13 i3

FINITE ELEMENT EQUATIONS

. . . e
We consider an element which currently occupies a volume i . Its nodal
displacements are u,y, nodal velocities vjy and nodal forces fi? . We represent
the velocities within the element by shape functions

A ~

vi = N &) vyg

(12)

where N; are the shape functions which are expressed in terms of the corota-
tional coordinates. Throughout this paper, upper case subscripts will refer to
nodal values, as exemplified in Eqg.{(12), and the indicial summation convention

will also apply to these subscripts.

The principle of virtual work gives
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~

Vg fiI = J Dij Tij dQ (13)
Qe

For elements other than the simplest, i.e. those with linear shape functions,
the orientation of the corotational coordinates will vary within the element as
shown in Fig. 1. Several alternatives are then available for handling the right
hand side of Eq. (13):

i. a single corotational coordinate system ii can be chosen for the ele-
ment as shown in Fig. 1 and the relative rotations ignored;

ii. a single corotational coordinate system X, can be chosen for the ele-
ment and the rotations relative to x, can be accounted for by modify-
ing the velocity strain equations;

iii. the relative rotations can be accounted for by using the transforma-
tions (7) and (9) at each point of the element.

In this paper we will explore the first and second alternative; the third
has been explored by Hughes and Liu [6].

For the first alternative, the use of Eg. (12) gives

int - N '
= — 14
Vit fir J Vit 3®, Tij (14)
€ J
Q
so the use of the transformation (5) and the arbitrariness of of Vit gives
. N
int I =
fir = R J ®, kg B (13
¢

It should be observed that the stress is expressed in texms of a single coro-
tational coordinate system throughout the element. Therefore, if we consider

a beam with a constant axial stress Tx, it follows that the only nonzero

nodal forces lie along the X axis regardless of the curvature of the beam. This
anomaly can yield spurious results whenever the flexural stiffness is small,
since it introduces parasitic bending in states of pure membrane stress, cf

fio}.
The second alternative is to introduce velocity strain relations which

account for the variation in rotations of the element but to express their compo-
nents in the element system. If we represent these relations by
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Dyq Diskr k1 (16)

then Eq. (15) becomes

int -
i1 = Ry J; Denkt Tmn 4% a7
%

In a subsequent section, forms of Eq.(l6) for beams and axisymmetric shells
will be presented. Higher order formulations as exemplified by Eq.(17) do
provide better accuracy, particularly for relatively coarse meshes, but they do
not eliminate parasitic bending.

A SIMPLE BEAM FORMULATION

In order to illustrate the application of a corotational velocity strain,
we will first consider a beam element with the simplest corotational formula-
tion where the nodal forces are evaluated by Eq.(15). The notation used is
shown in Fig. 2. We_will embed the element corotational coordinate within the
element so that the x - axis always connects nodes 1 and 2. Euler-Bernoulli
beam theory will be used, so that the velocities through the depth are com-
pletely defined by velocities of the middle surface Vi and V;

Vx = VX -y Vy,;{ (183.)
so that
ov
B, = == = V_--y ¥V == (18p
X 9x x,x Y Yy,xx )

where commas denote differentiation with respect to the subsequent variables.

The velocity field Vi will be approximated by linear shape functions, and
the transverse velocity field of the midline by cubic shape functions so that

v (19a)
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<1
1

> - 282 + B 6 + E - €D g, (19b)
E = x/% (19¢)

where the rigid body part of the velocity field has been omitted since it
causes no strain. The nodal velocities associated with deformation are thus

-.T -
T} = V0 610 6,1 (20)

and the conjugate nodal forces

=int (21)
where mI are the nodal moments. Combining Egs. (18) and (19), we obtain
\_,X2 "
D = == _ X - -
Dx 7 T [(6€ 4)¢l + (6§ 2)¢2] (22)
Equation (15) then gives
) 1 1
- 7 (6E= T 23
my J J v (6E-4) Tdidg (23)
0 A ~
m, —7 (6E-2)
whexre A is the cross-sectional area of the beam.
The remaining nodal forces can be obtained from equilibrium
fxl = _fx2
_ _ m +m, _ (24)
£ =-f =-——37
yl v2 L
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HIGHER ORDER VELOCITY
STRAIN EXPRESSIONS

The velocity strain expression, Eg.(22), is exact for a beam only when the
element's midline is coincident with the x-axis, which corresponds to the chord
between the two nodes. If the beam element is initially curved or if it de-
forms enough so that the midline displaces substantially from the x-axis, these
equations will be in erxrror because of the following effects:

1. The x and § axes are no longer coincident with the midline and its
normal, respectively, so Egs.(18) are in error because vV, and Vy are
not along the midline and its normal.

2. The volume integration neglects the deformation of the beam relative
to the x axis.

In order to account for the first effect without transforming between co-
ordinate systems within the element, higher order velocity strain relations are
developed, using the same basic ideas employed in [4] for corotational stretch
theories. For this purpose, the displacement of the midline relative to the
chord, or x axis, is denoted by Y. It will be assumed that

%- = O(e) §r = O(e) Yr-_ = O(ez) YI_ = YI (25)

X XX X X

2 . . .
and accuracy of order e is assumed; terms of higher order and certain other
terms are neglected. Because of space limitations, we omit the derivation,
and give only the final result

DX = dl - YKy (26a)

dl = Vx,i + Y,x VY,E (26b)
- 142,35 —3

Kl = (1 > Y'i) VY,XX + Y,xx vX,X (26¢)

For an axisymmetric shell element, we let x correspond to the radial coor-
dinate, r, and 6 be the circumferential coordinate. The corresponding relations

are
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el
[l

” d) - yKg (27a)

=l
I

8 d, - ¥&, (27Db)

where D, is the hoop velocity strain. The terms d, and Kk, are identical to

those for the beam, Egs.(26), while 1 L
v
4, = = = 1 (V cos o + V_ sin @) (28a)
2 r r x y
K = l-Y V. - cosoa+ i-[r(cos o - Y i ) - Y sino olv (28b)
5 r Yy Vi, % l_f 14 sin o sinocos ’-l

where r is the current radial coordinate of a point, o the current angle between
x and x, as shown in Fig. 2. For all applications we have considered so far,

the second terms in the expressions for Ky and Ky have been insignificant.

EXAMPLES

Results are given for a clamped ring shown in Fig. 3, for which experimen-
tal results are reported in [11l]; numerical results have been reported in [3].
Explicit time integration with the central difference method and a lumped mass
matrix was used. The material model is elastic-plastic with a Mises yield con-
dition and isotropic hardening. Because the width of the ring is large compared
to its thickness, plane strain was assumed in the z-direction. Furthermore, the
compressibility of the elastic strains was considered neglible, so the height h
of the cross-section was modified by

h = n2 /% (29)

for both the velocity strain computations, Eqg.(18b), and the nodal force comput-
tations, Eg.(23). The nodal forces were obtained by numerical gquadrature using
five points through the thickness, and two points along the length with a trape-
zoidal rule.

The displacements for the midpoint of the clamped ring are compared for
plane stress and plane strain, with and without the area correction of Eq.(29),
in Table 1. As can be seen, the effects of the plane strain assumption are
very significant, changing the result by 20%. The effect of the thickness cor-
rection is less pronounced but nevertheless not neglible.
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TABLE 1

EFFECTS OF ASSUMPTIONS ON MIDPOINT
DEFLECTION OF CLAMPED RING

Assumptions Midpoint deflection (in)
Plane strain, variable thickness 2.99
Plane strain, constant thickness 3.06
Plane stress, variable thickness 3.43
Plane stress, constant thickness 3.53

The plane strain solution with thickness correction compares best with
the experiment, so we will restrict all subsequent comparisons to this case.
The time history of the midpoint is compared to the experiment in Fig: 4. The
reported experimental results exhibit considerable snapback, which are absent
in the computations. Figures 5 and 6 compare the deformed shape and strain
time histories with the experiment. Overall, the agreement is quite good and
comparable to that of the numerical results reported in [3].
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SUMMARY

A microcomputer system being developed by the authors is introduced. The
parallel effort of compiling a series of compact finite element analysis pro-
grams enables the execution of most computation on inexpensive microcomputers.
The system is practically maintenance free and can be sustained by individual
laboratories of standard scale in the educational or academic environment.

As for the programs, FEMN is discussed in some detail. The program is an
extended version of the original linear analysis program FEM4 and is being
tested for application to problems with material nonlinearities.

INTRODUCTION

The finite element analysis has reached the stage where the execution
of the structural analysis is often considered routine. This is the case
particularly in the industrial environment. However, so far the execution
has relied largely on expensive hardware or costly remote time-sharing
services. The role of the giant main-frame or super-computer in the solu-
tion of large scale problems, e.g. the inelastic analysis of pressure vessels
and piping systems operated at elevated temperature, will not be changed
even in future applications. But it has been an ambition of engineers to
perform a great portion of their analysis jobs on inexpensive and hopefully
personal computers and thus be freed from being slave to the large systems.
The development of microcomputer and associated finite element analysis pro-—
grams is a breakthrough in realizing this goal.

The microcomputer system should be stand alone and almost maintenance
free so that it can be sustained by individual laboratories especially in
the educational or academic environment. The medium-sized engineering
problems should be solved within a reasonable time limit and the system
could also be adapted to multi-purpose usages, i.e. interactive compilation
of fundamental computation routines, data management, preparation of engi-
neering documents and reports, letter writing and so forth. 1In the present
paper a compact system is introduced which is being built by the authors.
In a parallel effort, a series of microcomputer finite element analysis
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programs are being developed. The original version .is FEM4 which is an
elastic analysis program of plane stress, plane strain and axisymmetric
problems (ref. 1, 2). It is extended to the nonlinear analysis program FEMN
by an addition of the restart capability. The results of this innovation
are manifold. By an incorporation of user defined subroutine MTRLN speci-
fying material data, problems with material nonlinearities can be easily
handled. Mesh division can be modified in the course of computation and
thus the simulation and/or pursuit, for.example, of crack.development in
fracture mechanics becomes easier. In the following, some details of

the microcomputer system and the program organization of FEMN are described
with the example solution of a simple pilot problem.

MICROCOMPUTER SYSTEM STRUCTURE

Figure 1 illustrates the structure of the microcomputer system almost
completed at the time, May 1980, of writing this paper. Zilog Z80 is used
as the 8 bit CPU (Central Processing Unit), and the capacity of main memory,
which is composed of a ROM (Read Only Memory) and several RAM (Random Access
Memory) boards, totals 64 kilobytes. The transfer of control, address and
data between the components of the system is performed exclusively via S-100
bus. For the purpose of connection and communication a number of interfaces
are installed. The 8" floppy disk drive constitutes the secondary memory for
mass storage and provides the housing of a compound of operating system, sup-
porting language, finite element analysis and other computer programs. The
standard disk operating system CP/M is used so that the problems in software
exchange can be avoided. At the moment, program languages are BASIC and
FORTRAN. It should be noted that two 240K dual disk systems are combined for
commanding four floppy disk assemblage, although a dual system kit suffices
to perform the standard operation. The authors intend to shorten the overall
analysis time by an adoption of parallel processing that uses several CPUs
and disk drives. The contemplated inclusion of the hard disk will increase
the capacity of secondary memory to a great extent and may open the way to a
novel system based on 16 bit microprocessors. :

Among the peripherals for I/0 (Input/Output) purposes shown in figure 1,
CRT unit and printer are the essentials. The function of CRT unit is manifold,
as it is used for input of the data, interactive operation of the system, com
pilation of program segments and/or subroutines, temporary display of the com-
puted results, preparation of documents, e.g. the users' manual, and so on.
" The prepared data, the completed list of the programs and the results of com-
putation can be plugged into the printer for permanent recording. Plotter
and graphics terminal are optional, but both are useful for the finite
element modeling and post-processing graphics, e.g. automatic mesh genera-
tion, model editing and plotting the computed results,

The general purpose programs compiled to date for mounting on the micro-
computer system are COMPOL, COMPOS, CALM, FEM4, MICRO-FEM and FEMN. The
first two, written in BASIC, are essentially the microcomputer version of
'COMPOsite material computation' being developed by Tsai on a magnetic card
calculator (ref.3, 4). In the program names, L and S stand for the laminate
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and sandwich composite structure respectively. CAIM is a matrix operation
program which is basically an interactive version of the first group opera-—
tions in the program CAL (ref.5, 6). FEM4 and its microcomputer version
MICRO-FEM are prepared to solve the plane stress, plane strain and axisym-
metric problems and then converted to FEMN to conduct nonlinear analysis.
Restart capability is implemented so that the inelastic material behavior

can be handled. Complementary modification is an addition of the user
defined subroutine MTRLN specifying the material properties which were for-
merly input through element data cards. The users who tailor the subroutine
MIRLN according to their material data can perform conveniently the inelastic
analysis on the microcomputer. An example of MTRLN is shown in the following
section.

ORGANIZATION OF NONLINEAR ANALYSIS PROGRAM FEMN

FEMN is composed of two parts FEMAB and FEMCD which are concerned with
the preparation of input data file and the solution procedure of the prob-
lem. The major feature of the program is that it uses dynamic storage
allocation which means the complete elimination of common statement. This
function is performed by subroutines OPENS, CLOSE, PSEEK and POOLWT as shown
in figures 2a and 2b.

The program organization of FEMAB is shown in figure 2a. It reads title
and control cards first. Then follows the input of node and element data from
which the index or integer joint array is formed and stored on IFILZ, IFIL2
accommodates also load data and IFIL6 is essentially a storage of input and
processed element data. The formation of strain-displacement matrix.B from
the data in IFIL6 is performed by subroutine MGN and the result is written
on IFIL3 to be read in FEMCD subsequently. Finally the initial displacement
data (usually the cleared zero displacement) are stored on IFIL5 for subse-
quent updating by the solution obtained through FEMCD. In the following the
principal functions of individual subroutines in FEMAB are summarized.

PINPG Preparatory segment for subroutine INPUTG

INPUTG Input generation, read input data in sequence and compile index or in-
teger jolnt array

RNODE Read node data

RELEM Read element data including material specification number and element
thickness

MKIDX Make index for attributing merging point and coordinate to input and
processed element data and also create index for skyline assemblage of
stiffness matrix

RLOAD Read loading step sequence and nodal force and/or displacement data

OPENS Open storage area for array from bottom of POOL in main memory
CLOSE C(Close a part or whole storage area by deleting unused array
PSEEK Search for array data by {its name

POOLWT Debug write wanted array data in POOL for inspection

PMGN Preparatory segment for subroutine MGN
MGN Command sequential generation of element matrices
ISOBMN Generate element strain-nodal displacement matrix B for 3-8 variable
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node parametric element

STDMA Evaluate components of strain—nodaldisplacement matrix B and determinant
of associated Jacobi matrix J

DISPI 1Initialize displacements, by either clearlng for initial run or
entering displacement data of preceding computation for restart run

After the execution of FEMAB described above, the next program block FEMCD
is called by the main of FEMN. Functions of FEMCD, whose organization is shown
in figure 2b, are the formation and assemblage of the element stiffness matrix
and subsequently the solution of the problem. Material data are input via the.
user defined subroutine MTRLN and then the stress-strain matrix D for each
incremental stage of loading is evaluated in subroutine DMXMKN. FEMCD starts
its operation by a transfer or reading of the data stored on IFIL5, which are
title of the problem, integer data, initial cleared displacement and load data
or their values obtained in preceding step of loading sequence. The stress-
nodal displacement matrix S and element stiffness matrix K are formed in sub-
routine SMXMKN, the latter being stored in the appropriate locations in the
overall stiffness matrix by referring to the index prepared on IFIL2. IFIL3
and 4 are used as the seesaw external memory for integer data and the element
strain-displacement matrix B. Skyline or profile active column method of data
acquisition is used for saving area in the main memory. Therefore all sub-
routines prefixed by capitals SK in SOLVEN, SKDCNP etc., take advantage of
the skylined form of storage for the manipulation of data. Newton-Raphson
iteration procedure is incorporated in subroutine SOLVEN, some details of which
are discussed in the next section concerned with the solution of an elementary
sample problem. The following summarises the function of individual sub-
routines relevant to FEMCD.

PSOLVN Preparatory segment for subroutine SOLVEN

SOLVEN Solve overall stiffness equation for unknown nodal displacement and com-
pute reaction at constrained node; iterative procedure is incorporated
in this solver for nonlinear problems

VECTIWN Print out computed displacement and reaction vector at each stage of
loading

SMXMKN Evaluate stress-nodal displacement matrix S and element stiffness
matrix K, synthesize overall stiffness matrix by referring to
merging point index stored on IFIL2, and also determine equivalent
nodal force from current stress data for equilibrium check

SWRITE Write components for debugging of active columms- in matrix S stored
by skyline method

BWRITE Write components of vector B for debugging

SKDCNP Cholesky decomposition of symmetric positive definite matrix by skyline
method

SKXMLU Multiply, add and/or subtract matrix components in skyline storage

CONVCK Check convergence of solution being obtained by Newton-Raphson iterative
procedure

SKFWD Forward elimination by skyline method

SKBKW Backward substitution by skyline method

DMXMKN Evaluate components of stress—strain matrix D of constitutive equation
MTRLN User defined subroutine specifying elastic and inelastic material prop-
erties
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STRSUM Add stress/strain increments to update values of stress/strain

PRINST Compute principal stresses and their directions

STRPRN Print out stress/strain solutions at respective Gauss integration
points, together with coordinates of Gauss points

Finite element used in FEM4 as well as in FEMN is 4-8 variable nodes para-
metric quadrilateral with the following interpolation functions (ref.7).
For corner nodes 1-4

N, = s1 - (N8+N5)/2, N, = S2 - (N5+N6)/2

1 2
N3 = S3 - (N6+N7)/2, N4 = S4 - (N7+N8)/2
for midedge nodes 5-8
N5 = SS’ N6 = 56’ N7 =,S7, N8 = SS

where S, stands for the trial functions defined as (ref.8, 9)
1 (1-£) (A-n)/4, s, (1+e) (A-n)/4

[92]
I

%2]
]

(+g)@+n)/4, S (1-&) (1) /4

3 4
S¢ = (1-g%)(1-n)/2, S, = (14£) A-n?)/2
5, = (I-E2)(1+M)/2, Sg = (1-£) A-n?)/2

By coalescing an edge of the quadrilateral to a single point a triangular ele-
ment is produced. It can be shown (ref.8, 9) that the resulting element coin-
cides with the conventional constant stress/strain element when the primary
quadrilateral element is four-noded. The number of integration points in
Gauss quadrature can be one to five by five in accordance with the users'
specification.

The input card or data sequence in FEMN is summarized in table I. An
example of input data preparation as well as the user defined subroutine MTIRLN
is illustrated in the next section.

SOLUTION OF SAMPLE NONLINEAR PROBLEM AND REMARKS

As a sample problem, nonlinear behavior of a composite block specimen
shown in figure 3 is analysed. The block consists of an ideally plastic ele-
ment 101 and a nonlinear one 501 with a negative slope segment at a large
strain as depicted in figure 4 based on the material data of figure 3. Loading
sequences are summarized in figure 3 and the solid curve in figure 4 is the
theoretical load-displacement relation of the block under axial tensile load-
ing. It is noted that the loading condition in numerical analysis is given by
the force increment for step 1-3 and 7-9, while in step 4-6 it is given by the
displacement increment.

Table II is the image of input cards prepared for the solution of the
sample problem and serves to illustrate simplicity of the data preparation.
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Specifically table II is concerned with the first loading sequence, i.e.

step 1-3. The solution for consecutive loading conditions, step 4-6 and 7-9
in the present example, is obtained by restarting the execution with the
renewal of input data and the use of the solution obtained in the preceding
step and stored on an appropriate file. Table III is the subroutine MTRLN
written for this sample problem. The program FEMN is versatile because the
user can easily tailor the subroutine MIRNL so that it characterizes. particu-
lar nonlinear properties of the material of interest. It must be emphasized
that the anisotropic material behaviors are easily incorporated in the program.

Figure 5 depicts solution convergence in the sample problem. The itera-
tive procedure that the present version of FEMN employs is a modified Newton-
Raphson method with incorporation of equivalent nodal force {F2}. It com-
pensates the imbalance of force equilibrium at the nodes and is given by

{F3} = {F} - [[B]T{c}dV

where {F} denotes the prescribed nodal force, [B] and {c} are the strain-nodal
displacement matrix and the current stress. Convergence is satisfactory in the
present example and it should be noticed that the computed results lie on the
theoretical curve exhibiting sharp turning points.

Test of convergence in case of the large scale problem, sophistication of
iterative procedure and extension of the program to three dimensions are the
next steps that are to be taken. Moreover, the development of parallel pro-
cessing and the installation of suitable hard disk will increase the speed and
capacity of the system.
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TABLE I INPUT DATA FORMAT OF FEMN

(1) TITLE CARD (18A4)

coL 1-72

PROBLEM IDENTIFICATION ETC BY ALPHANUMERIC CHARACTER

(2) CONTROL CARD (23I1)

CoL 1

=0

AXTSYMMETRIC

PLANE STRAIN

PLANE STRESS

NUMBER OF INTEGRATION POINTS (1-5) FOR GAUSSIAN QUADRATURE
INITIAL START

RESTART

NUMBER OF ITERATION IN NEWIION-RAPHSON METHOD
BLANK

DEBUG WRITE IN MODULE INPUG

DEBUG WRITE IN MODULE MG

DEBUG WRITE IN MODULE SOLVEN

(3) NODE HEADER CARD (A4)

COL 1-4

'NODE'

(4) NODE DATA CARDS (A4, I6, 2F10.0, 10X, F10.0, 10X, 2I1)

COL 1- 4
7-10
11-20
21-30
41-50

61

62

=1
=0
=1
=0

" NODE"

NODE NUMBER

X(R) COORDINATE

Y(Z) COORDINATE

OBLIQUE ANGLE (DEG) OF LOCAL COORDINATE
X-DOF CONSTRAINED OR X(R)-DISPL GIVEN
OR BLANK FREE OR X(R)-LOAD GIVEN
Y-DOF CONSTRAINED OR Y(Z)-DISPL GIVEN
OR BLANK FREE OR Y(Z)-LOAD GIVEN

(5) ELEM HEADER CARD (A4)

COL 1- 4

'FLEM'

(6) ELEM DATA CARDS (A4, I6, 8I5, I5*, 2I5%, F8.0)

COL 1- 4
7-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50
51-55
56-65
66-73

*
%

'ELEM'

ELEMENT NUMBER

1ST NODE NO.

2ND NODE NO.

3RD NODE NO.

4TH NODE NO.

5TH NODE NO.

6TH NODE NO.

7TH NODE NO.

8TH NODE NO.

MATERIAL SPECIFICATION NUMBER
FOR EXTENSION OF PROGRAM BY USERS
ELEMENT THICKNESS
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(7) LOAD HEADER CARD (A4)
COL 1- 4 'LOAD'

(8) LOAD OR DISPLACEMENT STEP CARD (A4, 16, 6F10.0)%*
COL 1- 4 'STEP'

5-10 STEP NUMBER

11-70 FOR PROGRAM EXTENSION

(9) LOAD OR DISPLACEMENT DATA CARD (A4, I6, 2F10.0)

COL 1- 4 "LOAD'
5-10 NODE NUMBER ON WHICH GIVEN LOAD OR DISPLACEMENT IS APPLIED
11-20 X(R) GIVEN NODAL FORCE OR DISPLACEMENT
21-30 Y(Z) GIVEN NODAL FORCE OR DISPLACEMENT

(10) END CARD (A4)
coL 1~ 3 'END'

% TINDICATES ADDITION OR MODIFICATION APPLIED TO LINEAR ANALYSIS PROGRAM FEM4
AND/OR MICRO-FEM

TABLE II INPUT DATA IMAGE OF SAMPLE PROBLEM OF FIGURE 3

Z-ELEMENT NONLINEAR MODEL TEST 1780-5-1& (ITER MAX= 8)

22 8

NODE

NODE 1 0. 000 0.000 11
NOLDE 2 0. 000 Z20.000 10
NODE 3 0. 000 40. 000 10
NCIDE 11 25.000 0. 000 01
NODE 13 25.000 40,000 00
NODE ey S0. 000 0. 000 o1
NODE 22 S0.000 20.000 00
NOLDE Z3 50. 000 40,000 00
ELEM

ELEM 101 1 21 23 3 i1 22 13 2 0 0..
ELEM S01 1 21 23 A i1 22 13 =z 1 o .
LCAD .
STEF 1 cewssesnm
LOAD 2 4000.000 0. 000 . (635)

LOAD 22 146000.000 Q. 000 -=* 0 &.000
LOAD 23 4000.000 0. 000 0 &.000
STEF brd

LOAD = Z2000.000 0. 000

LOAD 22  BOOO. 000 0. 000

LOAD 23 Z2000.000 0.000

STEF 3

LCAD 21 2000, 000 0. Q00

LOAD 22 8000.000 0. 000

LOAD 23 2000.000 0. 000

END
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aoonaonn

2100

3000

7400
39000

TABLE IIIX EXAMPLE OF USER DEFINED SUBROUTINE MTRLN
SUBROUTINE MTRLN(KK, IKsEK, ITER, ISTP)

IKC4) MATERIAL IDENTIFICATION NUMBER .
ERKC(IK(3}) COMPUTED STRAIN VALUE .
EK(IK(B)) CORRESPONDING STRESS VALUE .
ITER=0, ROUTINE DETERMINES TANGENT MODULUS .
ITERYDO. ITERATES STRESS FBOR COBMPUTED STRAIN VALUE .

DIMENSIGN KKCLy, IKC1)Y,EKCLD
MID=IK(4)

IKS=IK (8>

IK8=IK(9)

IFC(ITER.GT. 0 GO TO €000

#k—kk  SLOPE BOF STRESS-STRAIN CURVE  #%—%+
IF(MID.GT. D> GO T& =000

#k—dk  PERFECTLY PLASTIC k-
EKC2y=0.3

IF(EKC(IKS).GT.10.0E-3) GB TO =100
EK(1)»=2.0E4

GO TO BDDD

EK(11=0.0

GO TO 9000

#ok—kk NANLINEAR MATERIAL k-
EK(Z2)=0.73

IFCEK(IK9Y.GT. 3. 0E~3) GO TO =100
EK(1)y=2.0E4

G& T® 3000

IFCEK(IKS).GT.&.0E-3) GO TO 3200
EK(1)=0.0

GO T 3000

EK(13)=-1.DE+4

GB TO 3000

#k—kk GTRESS VALUE FOR COMPUTED STRAIN  sok—skek
IF(MID.GT.0) GO TO 7000

#k—skk PERFECTLY PLASTIC  #ok—:kh
IFCEKC(IK9).GT. 10.0E-3) GO TO &200
EK(IKE)=2. 0E4+EK (IKS)

G8 TO 90400

EK(IKE)=200.0

GO 70 3000

#*k—xk  NONLINEAR MATERIAL  #w—ds#
IFCEKC(IKT9).6T.3.0E-3) GO T 7200
EK(IKE)=2. DE4*+EK (IK3)

GO T® 3000

IFCEKC(IK9).GT.6.0E~-3) GO TA 7400
EK(IKB)=80.0

GO TG 3000

ERCIKE)=120.0-1. DE4+EK(IK9)
RETURN

END
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Figure 1.- Structure of microcomputer system.
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Figure 2.- Organization of FEMAB and FEMCD.
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